ТЕРМОСТАТИЧЕСКИЕ ВЕНТИЛИ ТЕРМОСТАТИЧЕСКАЯ ГОЛОВКА

770-772-771-773-774-775-774+940-775+940

ГОПИСАНИЕ

Термостатические вентили предназначены для регулировки подачи теплоносителя в радиатор, с целью обеспечения необходимой температуры в помещении.

При подключении термостатической головки, регулировка комнатной температуры, происходит в автоматическом режиме. При помощи термоголовки, в помещении поддерживается заданный температурный уровень, что позволяет экономить теплоэнергию, и оберегает от тепловых потерь.

тип	Фитинг	Радиатор
УГЛОВОЙ	M24x1,5	G1/2" - G3/8"
УГЛОВОЙ	G1/2"	G1/2" - G3/8"
ПРЯМОЙ	M24x1,5	G1/2" - G3/8"
ПРЯМОЙ	G1/2"	G1/2" - G3/8"
	УГЛОВОЙ ПРЯМОЙ	УГЛОВОЙ M24x1,5 УГЛОВОЙ G1/2" ПРЯМОЙ M24x1,5

■ ВЕНТИЛЬ ТЕРМОСТАТИЧЕСКИЙ ДЛЯ ЖЕЛЕЗНОЙ ТРУБЫ

Арт.	ТИП	Фитинг и радиатор
774 угловой термостатический вентиль для железной трубы	УГЛОВОЙ	G3/8" - G1/2"* - G3/4"
774+ патрубок арт. 940: угловой т/с вентиль для железной трубы с патрубком «антипротечка»	УГЛОВОЙ	G1/2" - G3/4
775 Прямой термостатический вентиль для железной трубы	ПРЯМОЙ	G3/8" - G1/2"* - G3/4"
775+ патрубок арт. 940 Прямой термостатический вентиль для железной трубы с патрубком «антипротечка»	ПРЯМОЙ	G1/2" - G3/4

▼ ТЕРМОСТАТИЧЕСКАЯ ГОЛОВКА

Арт.		Код	Резьба
1100 - термоголовка	Сертифицировано KEYMARK	821100AC20*	M28x1.5

ФИТИНГИ ДЛЯ ПОДКЛЮЧЕНИЯ ВЕНТИЛЯ

Для подключения термостатических вентилей ІСМА к медной, пластиковой и металлопластиковой трубе, используйте следующие фитинги:

Артикул:	Резьба фитинга:
90 - Запатентованный фитинг SICURBLOC для медной трубы	G1/2" - M24x1,5
98 - Запатентованный фитинг SICURBLOC для медной трубы	G1/2"
100 - фитинг для пластиковой и металлопластиковой трубы	M24x1,5

Артикульные коды термостатических вентилей указаны НИЖЕ, в разделе «РАЗМЕРЫ И КОДЫ»". Артикульные коды фитингов указаны в каталоге ICMA, а также на сайте www.icmaspa.it

▼ ТЕРМОСТАТИЧЕСКИЙ ВЕНТИЛЬ

На все термостатические серии данной серии можно установить термостатические головки ІСМА, для автоматической регулировки комнатной температуры.

Для установки термоголовки, нужно заменить пластиковый колпачок на термоголовку, как показано в разделе «установка и настройка термостатической головки».

. Термостатические вентили ICMA имеют 2 конфигурации: прямую и угловую.

. Подключение возможно к двум типам труб:

Железная труба – вентили с газовой резьбой (резьба подключения к системе).

Медная, пластиковая и металлопластиковая труба – вентили для которых предназначены специальные фитинги для подключения к трубе. Потери нагрузки указаны в диаграммах, расположенных в конце данной технической инструкции.

▼ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Характеристики

Теплоноситель: Вода, гликоль

Макс.концентрация гликоля: 50% Макс.рабочее давление: 10 Ваг

Макс.дифференц.давление: 1 Ваг (с термоголовкой)

 Температура теплоносителя:
 5 ÷ 120°C

 Бег затвора вентиля:
 3,5 mm

 Подключение к термоголовке:
 28 x 1,5

Материал

Корпус, американка, патрубок: Латунь CW617N - UNI 12165

(с никелировкой)

Кран-букса: Латунь CW617N - UNI 12164

Пружина и шток затвора Нержавеющая сталь Прокладки: Пероксидный ЕРDM

Ручка управления Нейлон 6 – 30% Стекловолокно

✓ УСТАНОВКА ВЕНТИЛЯ

При установке термостатического вентиля необходимо соблюдать направление потока теплоносителя: вход - со стороны системы, выход - в сторону радиатора.

ВНИМАНИЕ! В случае некорректной установки вентиля возможны следующие проблемы:

-Громкий стук похожий на стук молотка, свзяан с перевернутым положением «вход-выход» теплоносителя. Единственный способ устранить эту проблему, заново установить вентиль в правильном положении.

-Громкий свист. Связан с высоким напором воды в вентиле. Для устранения необходимо отрегулировать иконтролировать давление в системе. Желательна установка модуляционного насоса и регулятора дифференциального давления или байпасного вентиля дифференциального давления.

РЕМОНТ (ЗАМЕНА ПРОКЛАДОК САЛЬНИКА)

На всех термостатических вентилях ІСМА возможна замена прокладок, без слива воды из системы. Для этого, осуществите следующие шаги:

Открутите сальник при помощи ключа 14мм, как показано на рисунке.

Теперь прокладки можно заменить.

Артикулы для заказа: P10002043 P10002243

Закрутите сальник при помощи ключа 14мм, как показано на рисунке.

ТЕРМОСТАТИЧЕСКАЯ ГОЛОВКА

Термостатическая головка предназначена для автоматической регулировки и поддержания комнатной температуры на выбранном пользователем значении.

Часто, в помещениях, находятся дополнительные источники тепла: солнечный свет, бытовые электроприборы, компьютеры, кухонные плиты, и т.п.

Данные источники тепла, вызывают перегрев помещения, и приводят к ненужному перерасходу топлива в системе отопления, если нет автоматической регулировки комнатной температуры.

Термостатические головки, чувствительны к подобным изменениям температуры, и оптимизируют расход тепловой энергии, обеспечивая значительную экономию расхода тепла.

Все вентили данной серии, подходят для установки термостатической головки арт. 1100.

Термостатические вентили ІСМА, серийно поставляются с пластиковой ручкой для работы в ручном режиме регулировки температуры.

После установки термостатической головки, вентиль работает исключительно в автоматическом режиме. Для установки термоголовки 1100, нужно заменить пластиковый колпачок на термоголовку, как показано в разделе «установка и настройка термостатической головки».

И ШКАЛА РЕГУЛИРОВКИ

Шкала регулировки: ***** ÷ 5

Гистерезис:

Время реагирования:

Влияние температуры воды: Точность управления:

Применение ручной ручки:

сертифицирована:

Диапазон регулировки температуры: 7 ÷ 28°C

Символ снежинки ***** соответствует 7°С, и обеспечивает режим «антизамерзание».

0°C	7°C	12°C	16°C	20°C	24°C	28°C
0	*	1	 2	I 3	I 4	I 5

▼ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Характеристики		Материал	
Минимально значение (антизамеразание):	ts min 7°C (**)	Ручка:	Пластик ABS, белый RAL 9010
Максимальное значение (положение):	ts max 28°C (5)	Корпус:	PA6 30% F.V. RAL 9010
Экономный режим (положение):	20°C (3)	Жидкостной элемент:	Этил ацетат
Максимальное рабочее давление:	PN 1000 KPa	Крепежное кольцо:	Никелированная латунь
Максимальное дифференциальное давление:	Δp 100 KPa		CW617N - UNI 12164
Номинальный расход воды" прямой-угл. вентиль:	qm N 190 Kg/h	Штифт компенсатора:	Латунь CW617N - UNI 12164
Макс.рабочая температура:	110°C	Пружина штифта	Сталь фосфатная
Макс.температура хранения на складе:	50°C	компенсатора:	

MFORI

C 0.19 K

Z 20 min

D 0,25 K

W 0,7 K

CA 0,2 K

55°≈1K

M28x1,5

UNI - EN215

a 0,9

/ ПРИНЦИП ДЕЙСТВИЯ

Влияние вентиля на температуру в помещении:

Влияние дифференциального давления:

Подключение к термостатическому вентилю:

Термостатическая головка состоит из пластикового корпуса, и деталей, внутри которых скрыт теплочувствительный элемент.

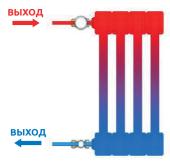
Данный элемент, работает по принципу расширения и уменьшения термостатической жидкости содержащееся в нем.

- -При росте температуры в помещении, термостатическая жидкостьрасширяется, и термостатический элемент увеличивается размере.
- -При снижении комнатной температуры, термостатическая жидкостьуменьшается в объеме, и термостатический элемент укорачивается.

Изменение длины термостатического элемента передается вентилю при помощи стального штифта компенсатора.

Вследствие чего, вентиль автоматически открывается или закрывается, в зависимости от изменения комнатной температуры.

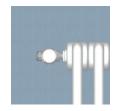
Компоненты термостатической головки специально сделаны из пластика, чтобы тепло от радиатора не влияло на термостатический элемент и его работу. Для регулировки температуры на термостатической головке, необходимо повернуть


пронумерованную ручку, до индикатора значения температуры. Для большей информации, ознакомьтесь со следующим параграфом техописания.

- -Положение 3 на ручке соответствует 20 оС. Это рекомендованное значение комфортной температуры помещения, при которой значительносокращаются расходы на отопление.
- -Символ "* снежинки это положение режима «антизамерзание».

Данный режим рекомендован при длительном отсутствии в зимний период,или для поддержания небольшой температуры в помещениях с низкойтемпературой.

вентиль закрыт


ОТКРЫТЫЙ ВЕНТИЛЬ

▮ ПОЛОЖЕНИЕ ТЕРМОГОЛОВКИ

Рекомендовано устанавливать термостатческие головки ICMA только в горизонтальном положении. Другие способы установки, негативно влияют на работу термоголовки.

/ ПОЛОЖЕНИЕ РАДИАТОРА

Нельзя устанавливать термоголовки:

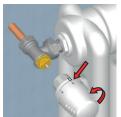
- -внутри декоративных ниш,
- -внутри декоративных шкафов,
- -под прямыми лучами солнечного света,
- -за шторами.

Несоблюдение этих правил, приведет кнекорректной работе термоголовки, и какследствие к всей системы отопления.

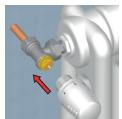
УСТАНОВКА И РЕГУЛИРОВКА ТЕРМОСТАТИЧЕСКОЙ ГОЛОВКИ

ПОДГОТОВКА К УСТАНОВКЕ ТЕРМОГОЛОВКИ

Открутить белую ручку против часовой стрелки, и снять ее с вентиля.



Снять ручку с вентиля и сохранить ее в качестве запасной части.



Полученный результат.

УСТАНОВКА ТЕРМОСТАТИЧЕСКОЙ ГОЛОВКИ

Установите термоголовку в положение 5. Это облегчит дальнейший монтаж.

Установите термоголовку, таким образом чтобы индикатор был хорошо виден.

Накрутите головку на вентиль, и зафиксируйте ее на корпусе. Несколько раз прокрутите ручку, вперед-назад.

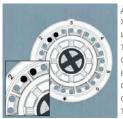
РЕГУЛИРОВКА ТЕМПЕРАТУРЫ

Цифры на ручке от 0 до 5, соответствуют определенным температурным значениям, с которыми Вы можете ознакомиться в таблице справа. Для выбора нужной температуры установить индикатор на выбранную цифру.

0°C	7°C	12°C	16°C	20°C	24°C	28°C
I 0	*	ł	 2	1 3	I 4	1 5

БЛОКИРОВКА ЗНАЧЕНИЯ ТЕМПЕРАТУРЫ

Установить ручку на цифру от 0 до 5. На примере выбрана цифра 2 (16 оС).



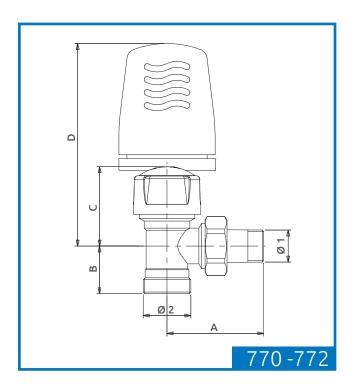
В нижней части термоголовки, те же цифры. Обратите внимание на отверстия, до и после выбранной цифры (на примере цифра 2).

Установить блокировочную шпильку в оба отверстия, до упора. Температура заблокирована на выбранном значении.

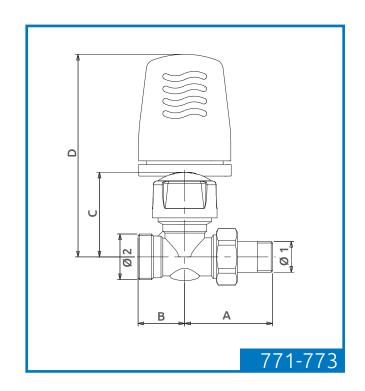
ОГРАНИЧЕНИЕ ТЕМПЕРАТУРЫ

Для ограничения хода термоголовки и выбранной температуры, обратите внимание на два отверстия сразу после цифры обозначающей температуру.

Вставьте шпильку в оба отверстия, до упора. Теперь термоголовка сможет двигаться только до этого значения температуры.



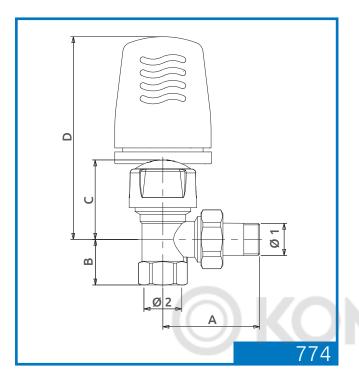
Шпилька заказывается, и продается отдельно от термоголовки.


КОД шпильки 111100AC06

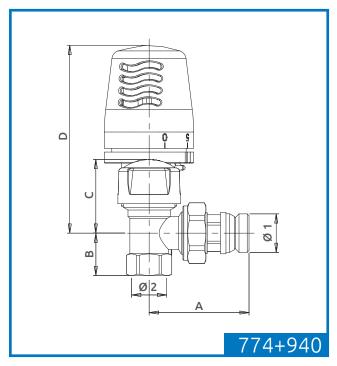
РАЗМЕРЫ И АРТИКУЛЫ

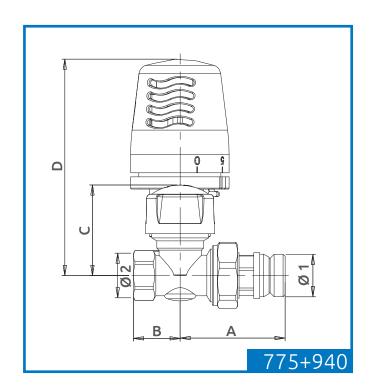
ТЕРМОСТАТИЧЕСКИЙ ВЕНТИЛЬ ДЛЯ МЕДНОЙ, ПЛАСТИКОВОЙ И М/П ТРУБЫ

код	Ø1	Ø2	Α	В	С	D
82770AC06	G3/8"	M24X1,5	49	24	40	102
82770AD06	G1/2"	M24X1,5	51	24	40	102
82772AC06	G3/8"	G1/2"	49	22	40	102
82772AD06	G1/2"	G1/2"	51	22	40	102


код	Ø1	Ø2	Α	В	С	D
82771AD06	G3/8"	M24X1,5	46	25	45	107
82771AD06	G1/2"	M24X1,5	48	25	45	107
82772AC06	G3/8"	G1/2"	46	25	45	107
82772AD06	G1/2"	G1/2"	48	25	45	107

ТЕРМОСТАТИЧЕСКИЙ ВЕНТИЛЬ ДЛЯ ЖЕЛЕЗНОЙ ТРУБЫ

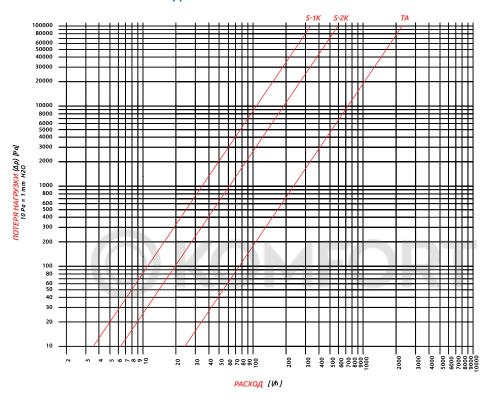

*ICMA ИДЕНТИФИКАЦИОННЫЙ НОМЕР 87


B A	775

код	Ø1	Ø2	Α	В	С	D
82774AC06	G3/8"	G3/8"	49	23	40	102
82774AD06*	G1/2"	G1/2"	51	23	40	102
82774AE06	G3/4"	G3/4"	57	25	40	102

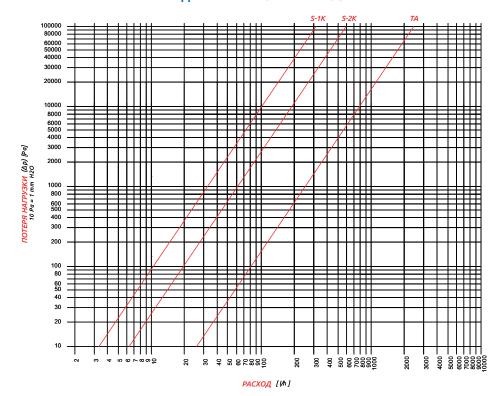
код	Ø1	Ø2	Α	В	С	D
82775AC06	G3/8"	G3/8"	45	23	45	107
82775AD06*	G1/2"	G1/2"	48	24	45	107
82775AE06	G3/4"	G3/4"	54	25	45	107

код	Ø1	Ø2	Α	В	С	D
82774AD06	G1/2"	G1/2"	51	23	40	102
82774AE06	G3/4"	G3/4"	57	25	40	102


код	Ø1	Ø2	Α	В	С	D
82775AD06	G1/2"	G1/2"	48	24	45	107
82775AE06	G3/4"	G3/4"	54	25	45	107

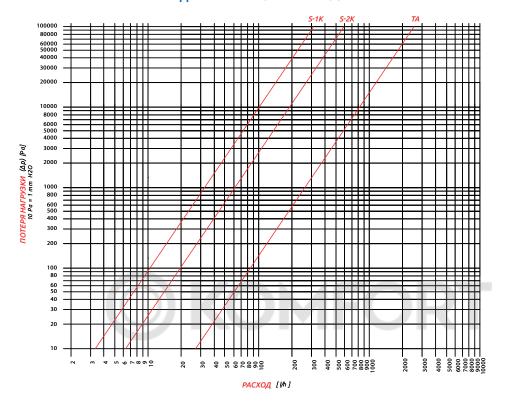
ПОТЕРЯ НАГРУЗКИ

 $Kv = Pacxod в м³/час, который производит потерю нагрузки в <math>^1$ бар.

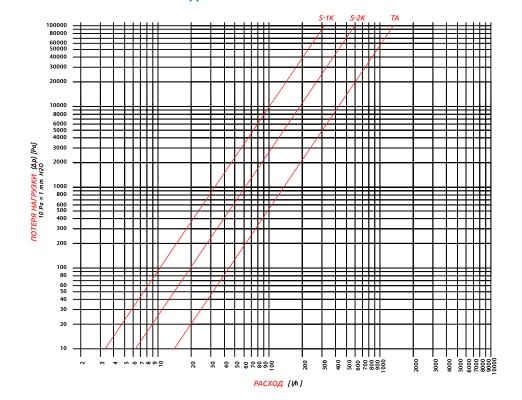

Термостатические клапаны для каждой команды 3/8" - АРТ. 770, 772, 774 ДИАГРАММА ПОТЕРИ НАГРУЗКИ

Kv [m³/h]		
TA	2,11	
S-2K	0,60	
S-1K	0,33	

Термостатические клапаны для каждой команды 1/2" - АРТ. 770, 772, 774, 774+940

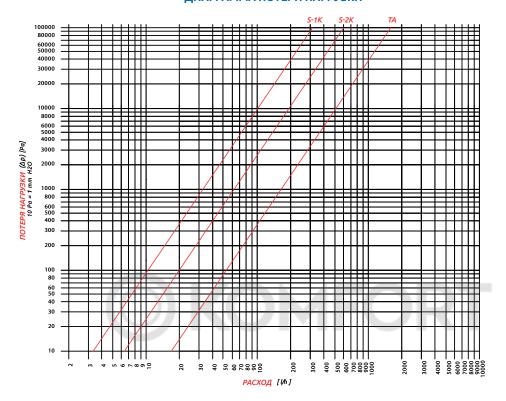

ДИАГРАММА ПОТЕРИ НАГРУЗКИ

Kv [m³/h]		
TA 2,21		
S-2K	0,60	
S-1K	0,33	

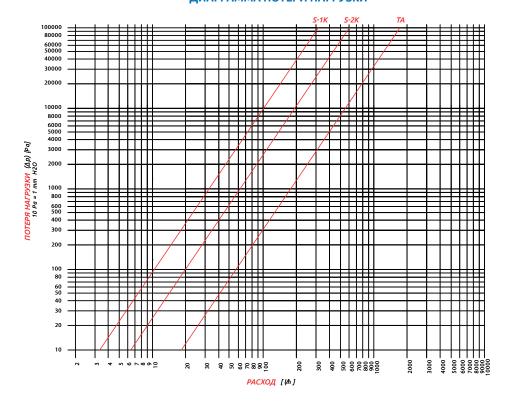


Термостатические клапаны для каждой команды 3/4" - АРТ. 774, 774+940 ДИАГРАММА ПОТЕРИ НАГРУЗКИ

Kv [m³/h]		
TA	2,53	
S-2K	0,60	
S-1K	0,33	


прямое термостатические клапаны 3/8" - АРТ. 771, 773, 775 ДИАГРАММА ПОТЕРИ НАГРУЗКИ

Kv [m³/h]		
TA	1,12	
S-2K	0,60	
S-1K	0,33	



прямое термостатические клапаны 1/2" - APT. 771, 773, 775, 775+940 ДИАГРАММА ПОТЕРИ НАГРУЗКИ

Kv [m³/h]		
TA	1,58	
S-2K	0,60	
S-1K	0,33	

прямое термостатические клапаны 3/4" - APT. 775, 775+940 ДИАГРАММА ПОТЕРИ НАГРУЗКИ

Kv [m³/h]		
TA	1,77	
S-2K	0,60	
S-1K	0,33	