

Программируемый терморегулятор ТЕРМ-2000

ПАСПОРТ руководство по эксплуатации

оглавление

1.	ОБЩИЕ УКАЗАНИЯ	.4
2.	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕРМ-2000	.5
3.	ЭЛЕМЕНТЫ УПРАВЛЕНИЯ ТЕРМ-2000	.7
4.	ПОРЯДОК РАБОТЫ ТЕРМ-2000	.9
	4.1. Первый запуск ТЕРМ-20001	0
	4.2. Структура данных на экране ТЕРМ-20001	1
	4.2.1. Окна установленного режима работы1	1
	4.2.2. Окна Меню настроек1	2
	4.2.3. Вход в Главное меню1	2
5.	УСТАНОВКА СИСТЕМНОГО ЯЗЫКА ТЕРМ-20001	3
6.	СМЕНА ПАРОЛЯ1	3
	6.1. Ввод пароля для изменения служебных данных	4
7.	РЕЖИМЫ РАБОТЫ ТЕРМ-20001	5
	7.1. Режим «Труба»1	6
	7.1.1. Порядок работы режима «Труба»1	17
	7.1.2. Настройка и активация режима «Труба»1	8
	7.1.3. Информация на экране и индикация в режиме «Труба»2	20
	7.2. Режим «Труба+»	20
	7.2.1. Порядок работы режима «Труба+»2	21
	7.2.2. Настройка и активация режима «Труба+»2	23
	7.2.3. Информация на экране и индикация в режиме «Труба+»2	26
	7.3. Режим «Кровля/дор»	27
	7.3.1. Порядок работы режима «Кровля/дор»2	29
	7.3.1.1. Подключён только датчик t° воздуха Д5 (датчики осадков и воды выключены в меню прибора и/или не подключены физически)2	29
	7.3.1.2. Подключён датчик t° воздуха Д5 и датчик t° поверхности для канала N независимо от наличия датчиков осадков и воды2	, 29
	7.3.1.3. Подключён датчик t° воздуха Д5, датчики осадков и/или воды, но нет датчика t° поверхности для канала N?	30
	7.3.1.4. Оттайка	31

	7.3.2.	Настройка и активация режима «Кровля/дор»	32
	7.3.3.	Информация на экране и индикация в режиме «Кровля/дор»	36
7	.4. Режи	м «Таймер»	37
	7.4.1. Г	Іорядок работы режима «Таймер»	
	7.4.2. F	Іастройка и активация режима «Таймер»	
	7.4.3. I	Інформация на экране и индикация в режиме «Таймер»	41
7	.5. P	ежим «Значения датчиков»	41
8.	HACT	РОЙКА НПТ	43
9.	СВЯЗЬ	ТЕРМ-2000 С ПК ПО MODBUS	45
10.	ЧАС	СТО ЗАДАВАЕМЫЕ ВОПРОСЫ ПО ТЕРМ-2000	53
11.	TPE	БОВАНИЯ БЕЗОПАСНОСТИ	54
12.	ГAF	АНТИИ ИЗГОТОВИТЕЛЯ	55
13.	TPA	НСПОРТИРОВКА И ХРАНЕНИЕ	55
14.	CBI	ЕДЕНИЯ О РЕКЛАМАЦИЯХ	56
15.	CBI	ІДЕТЕЛЬСТВО О ПРИЁМКЕ	57
16.	CBI	ЕДЕНИЯ О ПРОДАЖЕ	57

1. ОБЩИЕ УКАЗАНИЯ

Определения:

а.) Зона обогрева – отдельный обогреваемый объект, не зависящий и не влияющий на другие обогреваемые объекты, подключённые к терморегулятору

б.) Нагрузка – контактор, подключаемый к любому каналу ТЕРМ-2000, предназначенному для управления обогревом (реле 1-4). Подключенный контактор должен коммутировать нагревательный кабель в зоне обогрева

в.) Канал – выходное реле 1-4 на ТЕРМ-2000, к которому подключается нагрузка, а также соответствующий датчик температуры, аналоговый или цифровой. Нагрузки на всех каналах коммутируются независимо друг от друга

г.) Аналоговый датчик температуры – датчик на основе термопары, подключаемый к ТЕРМ-2000 ко входам «Датчики t^o 4...20 мА» с помощью нормирующего преобразователя температуры (HIIT) с выходным токовым сигналом 4-20 мА

1.1. Программируемый терморегулятор ТЕРМ-2000 (далее ТЕРМ-2000) – это универсальный регулятор температуры, предназначенный для автоматического управления обогревом в составе систем антиобледенения кровли, лотков, желобов, водосточных труб, дорожек, пандусов, ступеней и т.п. с целью очистки их поверхностей от атмосферных осадков и предотвращения образования наледи.

TEPM-2000 управляет обогревом с помощью коммутации нагревательных кабелей через внешние контакторы.

Терморегулятор TEPM-2000 позволяет подключать цифровые и аналоговые датчики температуры воздуха и температуры поверхности, датчики осадков и воды для измерения соответствующих параметров: температуры окружающего воздуха, температуры поверхности обогрева, наличия атмосферных осадков и талой воды в водосточной системе.

Аналоговые датчики температуры могут использоваться только для измерения температуры обогреваемых поверхностей. Эти датчики должны подключаться к TEPM-2000 с помощью *нормирующих*

4

преобразователей температуры (НПТ) с выходным токовым сигналом 4-20 мА.

ТЕРМ-2000 позволяет выбрать 1 из 4 алгоритмов работы в зависимости от типа обогреваемых объектов.

При необходимости удалённого управления прибором можно подключить TEPM-2000 к компьютеру (ПК) через интерфейс RS-485. Связь с ПК осуществляется по протоколу MODBUS RTU.

1.2. Приобретая терморегулятор ТЕРМ-2000:

- убедитесь в наличии штампа магазина и даты продажи в паспорте на гарантийный ремонт;
- убедитесь в наличии свидетельства о приёмке в паспорте на гарантийный ремонт;
- 1.3. В комплект поставки входят:
 - регулятор температуры ТЕРМ-2000
 - руководство по эксплуатации
 - упаковка

После транспортирования при отрицательных температурах необходимо выдержать терморегулятор в помещении, где предполагается его эксплуатация, без включения не менее двух часов.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕРМ-2000

Номинальное напряжение питания 110-250 В, 50 Гц
Ток потребления при выключенной нагрузке не более 6 мА (1,3Вт)
Предельные параметры нагрузки (реле 1-4) 6А / ~250В
Количество каналов управления до 4
Предельные параметры сигнальных реле 5-7 ЗА / ~250В
Количество подключаемых датчиков температуры:
цифровых до 5
аналоговых (через НПТ) до 4
Поддерживаемые типы микросхем цифровых датчиков:
DS1820, DS18B20, DS1822
Интерфейс НПТ для подключения аналоговых датчиков:
токовая петля 4-20 мА
Параметры выхода +5 В 0.1А / 4.75-5.25 В

Параметры выхода +24 В	0,1A / 22,8-25,2 B
Количество подключаемых датчиков осадков	до 2
Количество подключаемых датчиков воды	до 4
Пароль по умолчанию	
Температура эксплуатации	0 °C+60°C
Тип крепления в шкаф	DIN-рейка, 9 модулей
Габаритные размеры	160х96х62 мм
Степень защиты оболочки	IP20
Допустимая относительная влажность, не более	80%
Масса, не более	450 г
Интерфейс соединения с ПК	RS-485
Протокол связи с ПК	Modbus RTU

Габаритный чертёж ТЕРМ-2000 представлен на рисунке ниже

3. ЭЛЕМЕНТЫ УПРАВЛЕНИЯ ТЕРМ-2000

Рисунок 2. Лицевая панель

Рисунок 3. Вид снизу

1 – сетевое напряжение питания терморегулятора ТЕРМ-2000

2 – разъёмы для подключения нагрузок к каналам 1-4

3 – разъём для подключения индикатора ошибки (лампа, светодиод)

4 – разъём для подключения индикатора включения оттайки (лампа, светодиод) – используется только в режиме «Кровля/дор»

5 – разъём реле 7; может использоваться для коммутации питания для датчиков осадков – используется только в режиме «Кровля/дор»

6 – разъём подключения внешней кнопки для ручного включения и выключения оттайки в режиме «Кровля/дор»

7 – разъём подключения к ПК по интерфейсу RS-485

8 – экран для отображения информации

9 – светодиодные индикаторы включения реле 1-4, оттайки и коммутации питания для датчиков осадков

10 – кнопка ВЛЕВО

- 11 кнопка ВВЕРХ
- 12 кнопка ВПРАВО

13 – индикатор аварии

- 14 кнопка МЕНЮ/ОК
- 15 кнопка ВЫХОД
- 16 кнопка ВНИЗ

17 – «общий провод» для подсоединения датчиков температуры, осадков и воды

18 – выход +5 В для питания цифровых датчиков температуры

19 – разъёмы для подключения цифровых датчиков температуры на каналы 1-4 (датчики Д1-Д4) и цифрового датчика температуры воздуха Д5

20 – выход +24 В для питания НПТ при подключении аналоговых датчиков температуры

21 – разъёмы для подключения НПТ при подключении аналоговых датчиков температуры на каналы 1-4

22 – разъёмы для подключения датчиков осадков

23 – разъёмы для подключения датчиков воды

4. ПОРЯДОК РАБОТЫ ТЕРМ-2000

Терморегулятор ТЕРМ-2000 предназначен для установки в шкафу управления. Корпус ТЕРМ-2000 монтируется на DIN-рейку. К прибору необходимо подсоединить цифровые и/или аналоговые датчики температуры, при необходимости датчики осадков и воды, нагрузку, внешние индикаторные лампы, провода питания.

! Подключение всех датчиков, нагрузок и индикаторов к TEPM-2000 следует осуществлять только при отключенном напряжении питания прибора

Для исключения импульсных помех и сбоев в его работе необходимо зашунтировать обмотку подключаемых к ТЕРМ-2000 контакторов RC-цепью по приведённой ниже схеме:

После монтажа и коммутации питающих, силовых и сигнальных цепей необходимо произвести настройки TEPM-2000, по которым прибор будет в дальнейшем работать, в зависимости от требуемого режима работы.

Экран прибора оснащён постоянно включенной подсветкой: при первом запуске терморегулятора и при нажатии любой кнопки на лицевой панели подсветка горит максимально ярко в течении примерно 30 секунд, а затем яркость подсветки снижается до минимального уровня.

Вся рабочая информация в процессе эксплуатации прибора – меню настроек и основные окна выбранных режимов – отображается на экране ТЕРМ-2000, дополнительно используются светодиодные индикаторы (поз. 9 на рис. 2). Управление прибором происходит с помощью клавиатуры на лицевой панели или удалённо с помощью ПК по протоколу MODBUS RTU.

4.1. Первый запуск ТЕРМ-2000

После включения терморегулятора включается подсветка экрана и на нём примерно на 3 секунды появляется приветственное сообщение, а затем прибор переходит в установленный рабочий режим.

ТЕРМ-2000 поставляется с завода с предустановленным режимом работы «Значения датчиков». В этом режиме никакие индикаторные светодиоды (поз. 9 и 13 ни рисунке 2) не горят, все нагрузки выключены, на экране отображаются только значения от подключенных датчиков температуры.

4.2. Структура данных на экране ТЕРМ-2000

Отображаемые на экране терморегулятора данные разделяются на 2 секции: установленный режим работы и Меню настроек.

4.2.1. Окна установленного режима работы

При активации какого-либо режима на экране отображаются окна со всей необходимой информацией для выбранного режима работы: измеренные, вычисленные и предустановленные параметры. Навигация между этими окнами осуществляется только кнопками ВВЕРХ и ВНИЗ. Навигация циклическая – при нажатии кнопки ВНИЗ на последнем окне происходит переход на первое окно, аналогично и при нажатии кнопки ВВЕРХ на первом окне происходит переход к последнему окну – на рисунке 4 приведены примеры переходов между окнами в режимах Труба и Таймер.

При нажатии кнопки МЕНЮ/ОК происходит вход в основное Меню настроек прибора.

Рисунок 4. Переходы между информационными окнами в режимах Труба (слева) и Таймер (справа)

4.2.2. Окна Меню настроек

При нажатии кнопки МЕНЮ/ОК на экране происходит переход из секции установленного режима работы в Меню настроек, главное окно Меню показано на рисунке 5.

НАСТРОЙКА					
🗭 Язык/Language					
Пароль	420 мА				
Режим	MODBUS				

Рисунок 5. Главное меню ТЕРМ-2000

Навигация в Главном меню осуществляется кнопками ВВЕРХ и ВНИЗ – при этом перемещается стрелочный указатель на выбранный пункт Главного меню. При нажатии на кнопку МЕНЮ/ОК происходит заход в выбранный пункт Главного меню, а при нажатии кнопки ВЫХОД происходит возврат из Главного меню в секцию Рабочего режима на то окно, из которого был совершён вход в Главное меню.

В Меню ТЕРМ-2000 можно выполнить следующие настройки:

- 1.) Установить системный язык прибора русский / английский;
- 2.) Установить пароль из 5 цифр пароль по умолчанию 00000;
- 3.) Выбрать рабочий режим и установить необходимые для него параметры и значения;
- 4.) Настроить НПТ для аналоговых датчиков в зависимости от минимального (4 мА) и максимального (20 мА) токового сигнала;
- 5.) Установить параметры связи с ПК по протоколу MODBUS: назначить адрес устройства и скорость обмена данными.

Порядок установки системного языка указан в главе 5, действия по смене пароля приведены в главе 6, настройки режимов работы описаны в главе 7, настройка НПТ – в главе 8, связи с ПК по MODBUS посвящён раздел 9.

4.2.3. Вход в Главное меню

На рисунке 6 показан пример входа в Главное меню из 2-го окна установленного режима «Значения датчиков»:

Рисунок 6. Выход в Главное меню из секции рабочего режима

5. УСТАНОВКА СИСТЕМНОГО ЯЗЫКА ТЕРМ-2000

У терморегулятора можно установить 1 из 2 системных языков: русский или английский. Для установки языка не требуется вводить пароль. Установка языка

6. СМЕНА ПАРОЛЯ

Для исключения несанкционированного доступа посторонних лиц к TEPM-2000 его меню организовано таким образом, чтобы доступ ко всем критически важным настройкам осуществлялся только после ввода пароля – без пароля можно поменять только системный язык.

Пароль состоит из 5 цифр, **по умолчанию** – **00000**. Изменение пароля происходит по следующей схеме:

! Если на конкретном обогреваемом объекте нет необходимости защищать терморегулятор от вмешательства посторонних лиц, то для удобства пользования прибором не рекомендуется менять пароль по умолчанию – при входе во все настройки на странице ввода пароля автоматически подставляется 00000, то есть пароль по умолчанию, поэтому для входа в любое меню настроек не придётся каждый раз вводить пароль, а достаточно нажать на кнопку МЕНЮ/ОК для подтверждения пароля по умолчанию

6.1. Ввод пароля для изменения служебных данных

На рисунке 7 показан пример ввода пароля при входе на страницу выбора режима работы ТЕРМ-2000. Аналогичным образом требуется вводить пароль при изменении других служебных настроек – калибровке НПТ и настройке MODBUS.

Рисунок 7. Пример перехода из Главного меню на страницу выбора режима работы в зависимости от правильности ввода пароля

7. РЕЖИМЫ РАБОТЫ ТЕРМ-2000

TEPM-2000 позволяет поддерживать температуру независимо в каждой зоне обогрева в соответствии с выбранным алгоритмом работы прибора. Всего доступны 5 режимов работы:

- «Труба» поддержание заданной температуры обогреваемого объекта от минимальной t_{min} до максимальной t_{max}. Для каждого канала обогрева 1-4 необходимо подключить свой цифровой или аналоговый датчик (через НПТ) 1-4
- 2.) «Труба+» поддержание заданной температуры обогреваемого объекта в зависимости от текущей температуры воздуха t_{возд}, и установленных значений минимальной и максимальной температур для этого объекта. В этом режиме необходим цифровой датчик температуры окружающего воздуха Д5, также возможно подключение цифровых или аналоговых датчиков температуры к каналам 1-4
- 3.) «Кровля/дор» автоматически регулируемый электрообогрев для элементов кровли, крыш и т.п., а также участков земли перед зданиями и сооружениями типа входных групп и т.п., применяемое для предотвращения образования наледи на этих объектах. В этом режиме обязательно должен использоваться цифровой датчик температуры окружающего воздуха Д5, а также для экономии электроэнергии настоятельно

рекомендуется подключать 1 или 2 датчика осадков и датчики воды на используемые каналы 1-4

- 4.) «Таймер» режим управления нагревом без датчиков температуры по введённому периоду коммутации и коэффициенту мощности для каждого канала. В этом режиме не нужны ни датчики температуры, ни датчики осадков и воды
- 5.) «Значения датчиков» отображение температуры со всех цифровых и аналоговых датчиков температуры, подключённых к прибору

7.1. Режим «Труба»

Для использования режима «Труба» необходимо подключить к ТЕРМ-2000 до 4 цифровых (Д1-Д4) или аналоговых датчиков температуры (через НПТ), до 4 нагрузок (Реле 1-4), а также индикаторную лампу аварии датчиков температуры в соответствии со схемой на рисунке 8.

! При одновременном подключении на один и тот же канал цифрового и аналогового датчика температуры (через НПТ и интерфейс 4...20 мА) приоритет измерения температуры отдаётся аналоговому датчику

Рисунок 8. Схема подключения ТЕРМ-2000 в режиме «Труба»

7.1.1. Порядок работы режима «Труба»

Терморегулятор ТЕРМ-2000 поддерживает температуру на всех 4 каналах независимо в соответствии с установленными для них значениями t_{min} и t_{max} в пределах от t_{min} до t_{max} : как только измеренная температура на каком-то канале опустится ниже t_{min} , для этого канала включится нагрев, который будет продолжаться, пока температура обогреваемого объекта не достигнет t_{max} , затем нагрев прекратится, пока температура не упадёт до t_{min} , потом нагрев опять включится и так далее.

Разница между t_{max} и t_{min} – это температурный гистерезис. Минимальный гистерезис равен 1°С – в режиме «Труба» нельзя установить $t_{min} \ge t_{max}$. Пусть, например, для канала 2 установлено $t_{min} = +7$ °C и $t_{max} = +12$ °C, тогда на 2 канале будет поддерживаться температура в соответствии с кривой на приведённом ниже графике:

7.1.2. Настройка и активация режима «Труба»

Схема настройки режима «Труба» показана на рисунке 9, начиная со страницы выбора режима работы (см. рис. 7 из п. 6.1.). Навигация в окне «РЕЖИМЫ РАБОТЫ» осуществляется кнопками ВПРАВО и ВЛЕВО.

Рисунок 9. Настройка режима «Труба»

Если для какого-нибудь канала значения температуры введены с ошибкой, то есть $t_{min} \ge t_{max}$, t_{min} или t_{max} выходят за предельные

значения (см. таблицу 1), то при нажатии кнопки МЕНЮ/ОК не будет совершён переход на следующую страницу, будет показано предупреждение об ошибке и в строке с ошибкой справа отобразится восклицательный знак, при этом введённые данные не будут записаны в память прибора:

* ТРУБА	*
Ошибка ввод	да
канал 1: +004+00	4 °C 1
канал 2: -109+71	0°C !

* ТРУБА *	
Ошибка ввода	
канал 3: +025+024 °С !	
канал 4: +010+015 °С	

На последней странице настройки «Аварийное реле К5» можно выбрать, включать ли индикацию аварии при обнаружении ошибки на Ошибка температуры. ЛИНИИ датчиков датчика на канале определяется также в случае отсутствия и цифрового и аналогового датчика на этом канале. Поэтому, например, если используется только 2 канала – 1 и 2, – а каналы 3 и 4 не используются и к ним не подсоединено никакого датчика температуры, то для 3 и 4 канала следует отключить индикацию ошибки датчика, установив значения ДТЗ и ДТ4 в положение «Выкл», чтобы прибор мог показывать только ошибки на используемых каналах. На рис. 10 приведена схема активации режима «Труба»:

Рисунок 10. Активация режима «Труба»

Таблица 1. Предустановленные параметры режима «Труба» и диапазон их регулировок

Канал	1	2	3	4
t _{min} , ⁰С, предуст.	+3	+3	+3	+3
Диапазон t _{min} , ⁰С	-100+699	-100+699	-100+699	-100+699
t _{max} , ⁰С, предуст.	+5	+5	+5	+5
Диапазон t _{max} , °C	-99+700	-99+700	-99+700	-99+700
Сигнал аварии, предуст.	Вкл	Вкл	Вкл	Вкл

7.1.3. Информация на экране и индикация в режиме «Труба»

Рабочая информация в этом режиме отображается в 2 окнах. В первом окне показываются введённые значения температур t_{min} и t_{max} для каждого канала, а во втором окне – измеренное значение температуры на каждом канале и состояние реле:

- если вместо температуры стоит знак X, то датчик температуры на канале или отсутствует, или выдаёт ошибку;

- если рядом со значением измеренной температуры на канале появился символ H – это означает, что нагрев включён. Если символа H нет, то нагрев выключен.

На лицевой панели прибора в случае включения нагрева на какомлибо канале загорается соответствующий светодиод Реле 1-4.

Если для какого-либо канала обнаружена ошибка датчика и она включена в окне настроек «Аварийное реле К5», то на лицевой панели загорится светодиод ошибки (см. поз. 13 на рисунке 2).

7.2. Режим «Труба+»

Этом режим позволяет управлять обогревом независимо по каждому из 4 каналов при наличии **только одного датчика температуры** – датчика t° воздуха Д**5** (см. поз. 19 на рисунке 3). Также возможно подключение на каналы 1-4 и других датчиков, как цифровых, так и аналоговых через НПТ. Схема подключения TEPM-2000 в режиме «Труба+» приведена на рисунке 11.

Рисунок 11. Схема подключения ТЕРМ-2000 в режиме «Труба+»

! При одновременном подключении на один и тот же канал цифрового и аналогового датчика температуры (через НПТ и интерфейс 4...20 мА) приоритет измерения температуры отдаётся аналоговому датчику

7.2.1. Порядок работы режима «Труба+»

В этом режиме обязательно должен быть установлен отдельный цифровой датчик t° воздуха на вход Д5 (см. рис. 11). Если подключить также цифровые или аналоговые датчики на любые каналы 1-4, то, независимо от наличия датчика t° воздуха Д5, для этих каналов режим «Труба+» преобразуется в режим «Труба»: диапазон

температур будет от Т вкл. до Т выкл. вне зависимости от Т возд. мин. и показаний датчика Д5 – см. нижний график на рисунке 12.

Рисунок 12. Алгоритм работы нагрева на произвольном канале N (от 1 до 4) в зависимости от наличия на этом канале датчика t° поверхности

При наличии датчика t° воздуха на входе Д5 для тех каналов 1-4, к которым не подключён датчик t° поверхности, нагрев будет происходить по вычисленному коэффициенту заполнения (коэф. мощности) в соответствии с верхним графиком на рисунке 12. Этот коэф. мощности определяет время включения и отключения нагрева для определённого канала относительно установленного цикла реле в минутах – периода работы реле для каждого канала.

Пример вычисления коэф. мощности (P) для канала N при наличии датчика t[°] воздуха Д5 и отсутствии датчика t[°] поверхности на канале N в соответствии с рисунком 12 при установленном цикле реле для этого канала **50 минут**: $P = (T \ выкл. - T \ тек.) /(T \ выкл. - T \ возд. мин.)х100% = = (20 - 0)/(20 - (-15))х100% = 20/35х100% = 57,14%$

Р – это время от цикла реле (периода нагрева), в течении которого будет включён нагрев. То есть нагрев при указанных на верхнем графике рис. 12 параметрах будет осуществляться в течении 50х57,14% = 30,86 минут. Оставшиеся (50 – 30,86) = 19,14 минут нагрев осуществляться не будет.

Коэффициент мощности Р, соответственно и время нагрева и паузы постоянно изменяются в зависимости от текущей t[°] воздуха (показаний датчика Д5).

Если на произвольном канале N (1-4) установлен свой датчик t°, тогда показания датчика Д5 для этого канала игнорируются и этот канал работает в режиме «Труба» согласно нижнему графику на рисунке 12.

7.2.2. Настройка и активация режима «Труба+»

Схема настройки режима «Труба+» показана на рисунке 13, начиная со страницы выбора режима работы (см. рис. 7 из п. 6.1.). Навигация в окне «РЕЖИМЫ РАБОТЫ» осуществляется кнопками ВПРАВО и ВЛЕВО.

Рисунок 13. Настройка режима «Труба+»

Для вводимых температур должно выполняться соотношение: Твозд. мин < Т вкл. < Т выкл.

Если для какого-нибудь канала значения температуры введены с ошибкой – не выполняется приведённое выше соотношение или значения параметров выходят за допустимые пределы (см. таблицу 2), то при нажатии кнопки МЕНЮ/ОК не будет совершён переход на следующую страницу и будет показано предупреждение об ошибке, при этом введённые данные не будут записаны в память прибора:

На последней странице настройки «Аварийное реле К5» можно выбрать, включать ли индикацию аварии при обнаружении ошибки на температуры. Ошибка латчика линии датчиков на канале определяется также в случае отсутствия и цифрового и аналогового датчика на этом канале. Поэтому, например, если используется только 2 канала – 1 и 2, – а каналы 3 и 4 не используются и к ним не подсоединено никакого датчика температуры, то для 3 и 4 канала следует отключить индикацию ошибки датчика, установив значения ДТЗ и ДТ4 в положение «Выкл», чтобы прибор мог показывать только ошибки на используемых каналах. На рис. 14 приведена схема активации режима «Труба+».

Таблица	2.	Предустановленные	параметры	режима	«Труба+»	И
диапазон	ИХ	регулировок				

Канал	1	2	3	4
Т возд. мин., ⁰С, предуст.	-15	-15	-15	-15
Диапазон Т возд. мин., °С	-55+70	-55+70	-55+70	-55+70
Т вкл., ⁰С, предуст.	+3	+3	+3	+3
Диапазон Т вкл., ºC	-54+699	-54+699	-54+699	-54+699
Т выкл., ⁰С, предуст.	+5	+5	+5	+5
Диапазон Т выкл., ⁰С	-53+700	-53+700	-53+700	-53+700
Цикл реле, минут, предуст.	50	50	50	50
Диапазон Цикла реле, минут	0199	0199	0199	0199
Сигнал аварии, предуст.	Вкл	Вкл	Вкл	Вкл

Рисунок 14. Активация режима «Труба+»

7.2.3. Информация на экране и индикация в режиме «Труба+»

Рабочая информация в этом режиме отображается в 3 окнах (см. рис. 14). В первом окне показаны измеренные значения текущих температур для каналов 1-4, состояние нагрева — включён или выключен, — а также вычисленный коэффициент заполнения при управлении нагрузкой для каждого канала.

Во 2-м окне показаны введённые уставки для каналов 1-3: Т вкл., Т выкл. и Т возд. мин (tв).

В 3-м окне показаны уставки для канала 4 и измеренная текущая температура воздуха - Т тек.

В первом окне:

- если вместо температуры стоит знак X, то датчик температуры поверхности на канале отсутствует, или выдаёт ошибку. В таком случае канал работает по датчику температуры воздуха Д5: в

зависимости от введённых уставок и текущей температуры воздуха вычисляется коэффициент заполнения (коэффициент мощности)

- если в какой-либо строчке отображается измеренное значение температуры, то это означает, что для данного канала подключён датчик температуры поверхности и этот канал работает по алгоритму «Труба» (см. рис. 12 и п. 7.1.) независимо от показаний и наличия датчика Д5

- если в какой-либо строчке для каналов 1-4 появился символ H – это означает, что нагрев включён. Если символа H нет, то нагрев выключен

- справа в каждой строчке отображается вычисленный коэффициент мощности в соответствии с графиком на рис. 12

На лицевой панели прибора в случае включения нагрева на какомлибо канале загорается соответствующий светодиод Реле 1-4.

Если для какого-либо канала 1-4 обнаружена ошибка датчика и она включена в окне настроек «Аварийное реле К5», а также в случае аварии на линии датчика Д5 на лицевой панели загорится светодиод ошибки (см. поз. 13 на рисунке 2).

! Рекомендуется устанавливать период коммутации реле для любого канала (5-е окно настройки «Цикл реле, минут») не меньше 10 минут, во избежание частых переключений реле регулятора, соответственно, быстрого износа реле и подключенных к ним контакторов

7.3. Режим «Кровля/дор»

Этом режим используется для обогрева элементов кровли, входных групп и их элементов во избежание образования наледи на них. Управление обогревом происходит независимо по каждому из 4 каналов, но для работы этого режима обязательно должен быть установлен датчик температуры воздуха Д5 (см. поз. 19 на рис. 3). Одновременно возможно подключить на каналы 1-4 датчики температуры поверхности – цифровые, или аналоговые через НПТ, – в зависимости от решаемой задачи обогрева. Схема подключения TEPM-2000 в режиме «Кровля/дор» приведена на рисунке 15.

Для работы TEPM-2000 в режиме «Кровля/дор» достаточно только одного датчика температуры воздуха Д5, но для существенной экономии электроэнергии настоятельно рекомендуется подключать к прибору датчики осадков (ДО) и воды (ДВ).

Рисунок 15. Схема подключения ТЕРМ-2000 в режиме «Кровля/дор»

! При одновременном подключении на один и тот же канал цифрового и аналогового датчика температуры (через НПТ и интерфейс 4...20 мА) приоритет измерения температуры отдаётся аналоговому датчику TEPM-2000 в режиме «Кровля/дор» позволяет принудительно включать и выключать обогрев (функция Оттайка), также прибор может коммутировать питание подключенных датчиков осадков.

7.3.1. Порядок работы режима «Кровля/дор»

Алгоритм работы TEPM-2000 в этом режиме зависит от количества подключённых датчиков. Для работы этого режима необходим датчик температуры воздуха Д5. Когда температура окружающего воздуха находится в заданном в первом окне настроек диапазоне (см. рисунок 16, окно «Температура воздуха»), включается светодиод Питание ДО на лицевой панели прибора и Реле 7, которое можно использовать для коммутации питания датчиков осадков (см. схему на рис. 15), а дальнейший алгоритм работы режима «Кровля/дор» зависит от наличия остальных датчиков.

7.3.1.1. Подключён только датчик t° воздуха Д5 (датчики осадков и воды выключены в меню прибора и/или не подключены физически)

В таком случае, когда t° воздуха находится в заданном диапазоне (1-е окно настроек), на всех 4-х каналах ТЕРМ-2000 (Реле 1-4) будет включён постоянный нагрев. Неиспользуемые каналы можно отключить в 6-м окне настроек (см. рисунок 16, окно «Обогрев на канале»).

7.3.1.2. Подключён датчик t° воздуха Д5 и датчик t° поверхности для канала N, независимо от наличия датчиков осадков и воды

Если обогрев поверхности включён для канала N в 6-м окне настроек «Обогрев на канале», то, когда t^o воздуха находится в заданном диапазоне, будет включён обогрев на канале N для поддержания заданной для него температуры поверхности (см. рисунок 16, 5-е окно настроек «Темпер. поверхности»).

Этот режим можно использовать, например, для обогрева дорожек, входных групп и т.п.: t° поверхности будет поддерживаться на

установленном уровне, только когда t^o на улице будет в заданном диапазоне (когда обычно образуется наледь).

7.3.1.3. Подключён датчик t° воздуха Д5, датчики осадков и/или воды, но нет датчика t° поверхности для канала N

В данном случае неважно, подключен 1 или 2 датчика осадков (часто устанавливается 2 ДО на разных сторонах объекта), главное – подключить их программно в приборе во 2-м окне настроек (см. рисунок 16, окно «Чувств. датч. осадков»), указав нужную чувствительность 1-9 для каждого ДО, и физически установить ДО в разъёмы на приборе – поз. 22 на рисунке 3, также см. схему на рисунке 15. Датчик воды (ДВ) также следует включить программно в приборе для канала N с заданной чувствительностью 1-9 в 3-м окне настроек (см. рисунок 16, окно «Чувств. датчиков воды») и установить физически в N-й разъём для ДВ у прибора – поз. 23 на рис. 3, также см. схему подключения ДВ на рисунке 15.

Чувствительность ДО и ДВ:

1-минимальная

9 – максимальная

Алгоритм работы следующий. Когда t° воздуха находится в заданном диапазоне, на лицевой панели будет гореть светодиод «Питание ДО», включится Реле 7 для коммутации питания (подогрева) ДО, и будет отслеживаться состояние ДО и ДВ для канала N. Если любой из этих датчиков сработает, то включится обогрев на канале N до тех пор, пока все ДО и ДВ для канала N полностью не высохнут. После их полного высыхания происходит догрев отапливаемой поверхности в течении времени «Время догрева, мин» (4-е окно настроек).

Питание на ДО подаётся, как правило, от внешнего блока питания, поставляемого вместе с датчиком осадков или приобретаемого отдельно – для получения подробной информации по использованию ДО обратитесь к инструкции на применяемые датчики осадков.

7.3.1.4. Оттайка

Оттайка – это принудительное включение обогрева на всех каналах независимо от показаний датчиков t^o поверхности, датчика t^o воздуха (Д5), ДО и ДВ (* пример приведён в таблице ниже). Оттайка – ручной режим управления обогревом, и он будет работать даже при отсутствии всех датчиков, подключаемых к ТЕРМ-2000. Ниже показан пример срабатывания оттайки в ТЕРМ-2000 при установленных датчиках t^o поверхности на каналы 3 и 4 и при отсутствии датчиков t^o поверхности на каналах 1 и 2:

Канал	1	2	3	4
Наличие ДО	неважно	неважно	неважно	неважно
Наличие ДВ	неважно	неважно	неважно	неважно
Наличие датчика t°	LIOT	LIOT		
поверхности	нет	Hel	да	да
Обогрев на канале				
включён? (окно	Вкл	Вкл	Вкл	Вкл
«Обогрев на канале»)				
Оттайка на канале – t°				
воздуха (Д5) находится	Включена	Включена	Выключена	Выключена
в рабочем диапазоне				
Оттайка на канале – t°				
воздуха (Д5) находится	Вилюцена	Вилюцена	Вилюцена	Вилюцеца
вне рабочего	ылючена	БМІЮЧЕНА	БКЛЮЧЕНА	ыючена
диапазона				

Когда t° воздуха (Д5) находится в рабочем диапазоне и для какогото канала (каналы 3 и 4, как в примере) подключён датчик t° поверхности – для этого канала не будет включаться принудительный обогрев при включении Оттайки, поскольку на нём и так поддерживается заданная t° поверхности. Если же t° воздуха находится вне рабочего диапазона, то t° поверхности на этих каналах не поддерживается, и при включении Оттайки будет включён принудительный обогрев и на этих каналах.

Для управления оттайкой надо подключить кнопку на вход поз.6 на рисунке 1 в соответствии со схемой на рисунке 15; рекомендуется использовать кнопку без фиксации.

При однократном нажатии на кнопку и удержании её в течении 0.5-1.0 с включается функция оттайки: срабатывают все реле 1-4, которые включены в окне настроек 6 «Обогрев на канале», на лицевой панели загорается светодиод (с/д) Оттайка (см. поз 9 на рисунке 2) и включается реле 6, к которому можно подсоединить индикаторную лампу в соответствии со схемой на рисунке 15, при повторном нажатии кнопки и удержании её в течении 0.5-1.0 с функция оттайки отключается, с/д Оттайка гаснет, выключается реле 6, а реле 1-4 управляют нагрузками в соответствии с введёнными уставками и показаниями датчиков температуры, ДО и ДВ.

Если для управления оттайкой используется кнопка с фиксацией, то формировать импульс запуска и импульс остановки оттайки придётся вручную: для включения оттайки следует нажать на кнопку, подождать примерно 0.5-1.0 с до включения с/д Оттайка, затем нажать на кнопку ещё раз. Для выключения оттайки следует нажать на кнопку, подождать примерно 0.5-1.0 с до выключения с/д Оттайка, затем нажать на кнопку ещё раз. Таким образом, если, например, при включении оттайки, кнопку с фиксацией нажать один раз, замкнув выводы поз. 6 на рисунке 1, и затем не нажать её повторно, разомкнув импульс запуска оттайки выволы ЭТОМ входе, то будет на сформирован неправильно. Поэтому для управления оттайкой настоятельно рекомендуется использовать кнопку без фиксации.

7.3.2. Настройка и активация режима «Кровля/дор»

Схема настройки режима «Кровля/дор» показана на рисунке 16, начиная со страницы выбора режима работы (см. рис. 7 из п. 6.1.). Навигация в окне «РЕЖИМЫ РАБОТЫ» осуществляется кнопками ВПРАВО и ВЛЕВО.

Для корректной работы TEPM-2000 в рабочем диапазоне температур воздуха введён гистерезис в 0,5 °С: например, установлен диапазон -10...+5 °С и текущая t° воздуха +3 °С. Тогда алгоритм «Кровля/дор» работает в зависимости от сигналов подключенных датчиков в соответствии с п. 7.3.1.1-7.3.1.4, пока температура воздуха не поднимется выше +5,5 °С или не опустится ниже -10,5 °С. После выхода температуры воздуха за эти пределы (то есть с учётом

гистерезиса в 0,5 °C) прибор снова будет работать в зависимости от сигналов датчиков, когда температура воздуха окажется в установленном диапазоне -10...+5 °C.

Рисунок 16. Настройка режима «Кровля/дор»

Если диапазон температуры воздуха (1-е окно настроек, см. рисунок 16) введён с ошибкой – не выполняется соотношение $t_{min} < t_{max}$, – то при нажатии кнопки МЕНЮ/ОК не будет совершён переход на следующую страницу и будет показано предупреждение

об ошибке, при этом введённые данные не записываются в память прибора:

* КРОВЛЯ/ДОР * Ошибка ввода Температура воздуха +10 ... +05 °C

Для использования датчиков осадков и воды необходимо подключить их физически к ТЕРМ-2000, а также настроить их чувствительность во 2-м и 3-м окне настроек («Чувств. датч. осадков» и «Чувств. датчиков воды»).

В 4-м окне настроек необходимо установить время догрева поверхностей после пропадания сигнала с датчиков осадков и воды: сигнал с датчиков пропадает, когда они полностью высыхают, но это не всегда означает также и полное освобождение обогреваемой поверхности от воды – в низинах, впадинах и выемках конструкции обогреваемой поверхности может остаться вода даже после полного высыхания ДВ и ДО. Для её полного испарения и предотвращения дальнейшего образования наледи следует установить время догрева в окне «Время догрева, мин».

В 5-м окне «Темпер. поверхности» устанавливается требуемая температура для обогрева поверхности на каналах 1-4 в соответствии с п. 7.3.1.2. – обогрев поверхности рекомендуется использовать для предотвращения образования наледи во входных группах перед зданиями и сооружениями, для обогрева лестниц, пандусов, крылец и подобных сооружений. Для использования обогрева поверхности на каком-либо канале этот канал необходимо включить в 6-м окне настроек «Обогрев на канале».

Последнее 7-е окно настройки «Время оттайки. часов» позволяет задать требуемое время, на которое в ручном режиме будет включаться принудительный обогрев поверхностей (Оттайка) в соответствии с п. 7.3.1.4.

Диапазон регулировок параметров в режиме «Кровля/дор» и их предустановленные значения приведены в таблице 3. Схема активации режима показана на рисунке 17.

34

Таблица 3. Предустановленные параметры режима «Кровля/дор» и диапазон их регулировок

Канал	1	2	3	4
t° воздуха, ⁰С, предуст.	-10+5	-10+5	-10+5	-10+5
Диапазон t° воздуха., ⁰С	-69+69	-69+69	-69+69	-69+69
Чувствительность ДО, предуст.	Выкл	Выкл	Выкл	Выкл
Диапазон чувствительности ДО	Выкл-1-9	Выкл-1-9	Выкл-1-9	Выкл-1-9
Чувствительность ДВ, предуст.	Выкл	Выкл	Выкл	Выкл
Диапазон чувствительности ДВ	Выкл-1-9	Выкл-1-9	Выкл-1-9	Выкл-1-9
Время догрева, мин., предуст.	40	40	40	40
Диапазон времени догрева, мин. *	1199	1199	1199	1199
t° поверхности, °С, предуст.	+5	+5	+5	+5
Диапазон t° поверхности, °C	-69+69	-69+69	-69+69	-69+69
Обогрев на канале	Вкл	Вкл	Вкл	Вкл
Время оттайки, часов, предуст.	3	3	3	3
Диапазон времени оттайки, ч	19	19	19	19

* Диапазон времени догрева поверхностей после пропадания сигнала с датчиков осадков и воды должен быть установлен в пределах 1...199 минут для каждого канала. Если для какого-то из каналов время догрева поверхности установлено в 0 минут, то обогрев этой поверхности не будет происходить даже при срабатывании ДО и ДВ – соответствующий канал отключается

Рисунок 17. Активация режима «Кровля/дор»

7.3.3. Информация на экране и индикация в режиме «Кровля/дор»

Рабочая информация в этом режиме отображается в 4 окнах (см. рис. 17). В 1-м окне показан установленный рабочий диапазон температуры воздуха и её текущее значение. Во 2-м и 3-м окне отображены установленные и текущие температуры обогреваемых поверхностей – символ X вместо числового значения температуры свидетельствует о неисправности или отсутствии датчика t°. В 4-м окне представлена информация о состоянии датчиков осадков и воды (см. рисунок 18).

Рисунок 18. 4-е окно рабочего режима «Кровля дор»

1 – номер датчика осадков и воды (поз. 22 и 23 на рисунке 3)

2 и 3 – область предустановленных и текущих данных от ДО/ДВ:

2:

символ * – сработал ДО

символ капли – сработал ДВ

3: предустановленная чувствительность датчика

Выкл. – датчик выключен программно во 2-м или 3-м окне настроек (см. рис. 16)

Грязь – обнаружено короткое замыкание датчика, его необходимо прочистить от грязи или заменить

Светодиоды на лицевой панели ТЕРМ-2000 отображают следующую информацию:

- 1.) При неисправности датчика температуры воздуха Д5 на лицевой панели загорается с/д Ошибка (поз. 13 на рис. 1)
- 2.) Включение нагрузок сопровождается включением соответствущих индикаторных с/д Реле1-4
- 3.) При включении функции оттайки загорается с/д Оттайка
- 4.) Когда температура воздуха находится в заданном диапазоне, включается с/д Питание ДО

7.4. Режим «Таймер»

Режим «Таймер» позволяет управлять нагрузками с помощью широтно-импульсной модуляции (ШИМ) – к нагрузкам подводится определённая доля от максимально возможной мощности в зависимости от заданного коэффициента заполнения (см. п. 7.4.1).

В этом режиме не нужны никакие датчики температуры – даже если они подключены, то их сигналы игнорируются. Схема подключения TEPM-2000 в режиме «Таймер» показана на рисунке 19.

Рисунок 19. Схема подключения ТЕРМ-2000 в режиме «Таймер»

7.4.1. Порядок работы режима «Таймер»

Этот режим используется для управления нагрузками на всех 4 каналах в зависимости от установленного периода нагрева и коэффициента заполнения в % для каждого из каналов в соответствии с рисунком 20.

Например, для канала 1 установлен период таймера 100 минут и коэффициент заполнения 50%, а для канала 2 установлен период таймера 90 минут и коэффициент заполнения 70%. Тогда, после активации режима «Таймер», для канала 1 первые 50% времени от 100 минут = 50 минут будет включено реле 1, а оставшиеся 50% периода (50 минут) реле 1 будет выключено. Для канала 2 аналогично: 70% от 90 минут = 63 минуты будет включен.

Рисунок 20. Алгоритм работы нагрева на произвольном канале N (от 1 до 4) в режиме «Таймер»

7.4.2. Настройка и активация режима «Таймер»

Схема настройки режима «Таймер» показана на рисунке 21, начиная со страницы выбора режима работы (см. рис. 7 из п. 6.1). Навигация в окне «РЕЖИМЫ РАБОТЫ» осуществляется кнопками ВПРАВО и ВЛЕВО.

На страницах настроек будут мигать знакоместа. Выбор нужного знакоместа осуществляется кнопками ВПРАВО и ВЛЕВО (прокрутка циклическая справа налево и слева направо). Ввод нужной цифры в знакоместо или установка знаков + и - осуществляется циклически кнопками ВВЕРХ (0...9-0...9 или +/- и т.д.) и ВНИЗ (0-9...0-9...0 или +/- и т.д.). Для сохранения введённых данных надо нажимать на кнопку МЕНЮ/ОК

Рисунок 21. Настройка режима «Таймер»

На рис. 22 приведена схема активации режима «Таймер»:

Рисунок 22. Активация режима «Таймер»

Если какой-то канал не используется в системе электроотопления и его нагрузка не подключена к ТЕРМ-2000 (Реле 1-4), то коммутацию на этом канале можно отключить программно, установив для него в окне настроек Период реле = 0 или коэффициент заполнения = 0. В таблице 4 приведены значения предустановленных параметров для режима «Таймер» и диапазон их регулировок.

! Рекомендуется устанавливать период коммутации реле для любого канала (5-е окно настройки «Цикл реле, минут») не меньше 10 минут, во избежание частых переключений реле регулятора, соответственно, быстрого износа реле и подключенных к ним контакторов Таблица 4. Предустановленные параметры режима «Таймер» и диапазон их регулировок

Канал	1	2	3	4
Период, минут, предуст.	50	50	50	50
Диапазон периодов, минут	0199	0199	0199	0199
Коэффициент заполнения, %, предуст.	50	50	50	50
Диапазон коэффициентов заполнения, %	099	099	099	099

7.4.3. Информация на экране и индикация в режиме «Таймер»

Рабочая информация в этом режиме отображается в 3 окнах (см. рисунок 22). В 1-м окне отображается время в минутах до отключения реле на каждом канале. Во 2-м и 3-м окнах показаны предустановленные значения периода коммутации и коэффициента заполнения для каждого канала.

Если в 1-в окне для какого-то канала вместо оставшегося времени до отключения реле показаны символы «---», то этот канал отключён программно – в меню настроек режима для этого канала установлен Период реле = 0 или коэффициент заполнения = 0.

На лицевой панели прибора в случае включения нагрева на какомлибо канале загорается соответствующий светодиод Реле 1-4.

7.5. Режим «Значения датчиков»

Режим «Значения датчиков» отображает температуру со всех подключенных к прибору цифровых и аналоговых датчиков температуры. Этот режим можно использовать как сервисный на этапе пусконаладки или при диагностике системы электроотопления. Схема подключения TEPM-2000 в режиме «Значения датчиков» показана на рисунке 23.

Этот режим не требует настройки, он активируется сразу в соответствии со схемой на рисунке 24.

Информация на экране прибора в режиме «Значения датчиков» отображается в 2 окнах (см. рисунок 24): в 1-м окне показаны

измеренные значения температур от цифровых датчиков, во 2-м окне – значения температур от аналоговых датчиков, подключаемых к ТЕРМ-2000 через НПТ.

Рисунок 23. Схема подключения ТЕРМ-2000 в режиме «Значения датчиков»

Рисунок 24. Активация режима «Значения датчиков»

8. НАСТРОЙКА НПТ

Аналоговые датчики температуры подключаются к ТЕРМ-2000 через нормирующие преобразователи температуры $H\Pi T.$ _ преобразующие аналоговых сигнал от датчиков (термосопротивлений) в сигнал токовой петли 4-20 мА. Калибровка выходного сигнала ΗΠΤ осуществляется на самом таком преобразователе – для получения подробной информации обратитесь к инструкции на применяемые НПТ.

Для правильной работы с НПТ в терморегуляторе TEPM-2000 необходимо задать требуемые значения минимальной и максимальной температуры в зависимости от минимального (4 мА) и максимального (20 мА) токового сигнала для каждого канала, к которому подключаются НПТ.

Настройка НПТ в ТЕРМ-2000 происходит в пункте «4...20 мА» Главного меню (о том, как войти в Главное меню, см. п. 4.2.3). Схема настройки НПТ приведена на рисунке 25.

Диапазон вводимых значений для каждого канала:

4 мА: -100...+699 °C 20 мА: -099...+700 °C Предустановленные значения для каждого канала:

4 мА: -50 °C 20 мА: +200 °C

Если значения на какой-то странице настроек введены неправильно (вне допустимых значений, или не выполняется соотношение $t_{4MA} < t_{20MA}$), то при нажатии кнопки МЕНЮ/ОК не будет совершён переход на следующую страницу и будет показано предупреждение об ошибке, при этом введённые данные не записываются в память прибора:

* Вход2 4...20 мА * Ошибка ввода 4 мА: +200 °С 20 мА: +200 °С

Рисунок 25. Схема настройки НПТ

9. СВЯЗЬ ТЕРМ-2000 С ПК ПО MODBUS

Удалённое управление TEPM-2000 через ПК осуществляется с помощью протокола MODBUS RTU по интерфейсу RS-485 (клеммы A и B – поз. 7 на рисунке 1). Для наладки связи с ПК требуется задать прибору адрес устройства и выбрать скорость обмена данными. Эти параметры настраиваются в пункте «MODBUS» Главного меню (о том, как войти в Главное меню, см. п. 4.2.3). Схема выбора скорости

обмена данными на примере установки 115200 кбит/с приведена на рисунке 26, а установка адреса устройства показана на рисунке 27.

Рисунок 26. Смена предустановленной скорости MODBUS с 19200 кбит/с на 115200 кбит/с

Доступные значения скоростей обмена данными, кбит/с: 2400, 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200 и 230400. Возможные адреса устройства в сети MODBUS – от 1 до 247.

Рисунок 27. Установка адреса устройства в сети MODBUS

В ТЕРМ-2000 реализовано 2 функции MODBUS:

- 1.) 0x03 READ HOLDING REGISTERS (Получение текущего значения одного или нескольких регистров хранения);
- 2.) 0x10 PRESET MULTIPLE REGISTERS (Установить новые значения нескольких последовательных регистров).

Особенности протокола MODBUS:

- 1.) Полином вычисления контрольный суммы CRC16 0хA001;
- 2.) Порядок передачи контрольной суммы: первый байт LOW, второй HIGH;
- 3.) Предустановленная скорость MODBUS 19200 кбит/с
- 4.) Предустановленный адрес устройства 123;
- 5.) Чтобы узнать адрес ТЕРМ-2000, надо послать ему команду 0x03 с адресом устройства 0. Ответ от ТЕРМ-2000 в таком случае состоит из 4 байт: 1 адрес устройства, 2 код запроса (0x03), 3 и 4 байты CRC16.
- 6.) При настройке параметров MODBUS RTU в SCADA-системе ACУ TП для подключения TEPM-2000 при средних скоростях обмена данными рекомендуется устанавливать величину таймаута ожидания ответа от

устройства не менее 100 мс, а для низких скоростей (ниже 9600 кбит/с) – порядка 300 мс и более.

9.1. Таблица регистров MODBUS для ТЕРМ-2000

В таблице 5 представлены регистры TEPM-2000 для связи с ПК по MODBUS. Тип данных всех регистров MODBUS в TEPM-2000 – signed int16, то есть знаковое целочисленное 16-битное значение типа int. В таблице 5 в столбце «Назначение регистров» значения приведены в десятичном формате (DEC).

Регистры с порядковыми номерами от 0 до 94 содержат значения всех вводимых через Главное меню параметров (данные для режимов работы, значения настройки НПТ и т.д.).

При вводе параметров в TEPM-2000 с ПК через систему АСУ ТП (или любое другое аналогичное ПО) следует следить за их нахождением в допустимом диапазоне, указанном для каждого значения в соответствующих главах настоящего Руководства и таблице 5, во избежание неправильной работы прибора

Регистры с порядковыми номерами от 100 до 134 содержат значения текущих параметров ТЕРМ-2000, измеряемых и изменяющихся во время работы прибора: текущие температуры поверхности на каждом канале, состояние реле, коэффициент мощности и т.д.

Данные регистров 100-108 (текущие значения датчиков температуры) представлены в формате **x10** – значение температуры, умноженное на 10. Например:

- 1.) Текущая t^o цифрового датчика Д1 = +25,6 °C. Тогда в регистре 100 (0х64) будет значение 256
- 2.) Текущая t^o цифрового датчика Д2 = -19,6 °C. Тогда в регистре 101 (0х65) будет значение -196
- 3.) Текущая t^o аналогового датчика на 3 канале = +357,2 °C. Тогда в регистре 107 (0х6В) будет значение 3572
- 4.) На 4 канале отсутствует аналоговый датчик. Тогда в регистре 108 (0x6C) будет значение -4040

Таблица 5. Регистры ТЕРМ-2000 для связи с ПК по MODBUS

	Адр	bec	Чтение	Запись 0x10	Назначение регистра
название регистра	DEC	HEX	0x03		
Данные для	режим				
chan1TempStart	0	0	+	+	Начальная t° канала 1
chan1TempFinish	1	1	+	+	Конечная t° канала 1
chan2TempStart	2	2	+	+	Начальная t° канала 2
chan2TempFinish	3	3	+	+	Конечная t° канала 2
chan3TempStart	4	4	+	+	Начальная t° канала 3
chan3TempFinish	5	5	+	+	Конечная t° канала 3
chan4TempStart	6	6	+	+	Начальная t° канала 4
chan4TempFinish	7	7	+	+	Конечная t° канала 4
dtEmerg1	8	8	+	+	Индикация аварии датчика на канале 1: 1 - Вкл, 0 - Выкл
dtEmerg2	9	9	+	+	Индикация аварии датчика на канале 2: 1 - Вкл, 0 - Выкл
dtEmerg3	10	А	+	+	Индикация аварии датчика на канале 3: 1 - Вкл, 0 - Выкл
dtEmerg4	11	В	+	+	Индикация аварии датчика на канале 4: 1 - Вкл, 0 - Выкл
Данные для	режим	a "TP}	/БА+"		
ch1TempStartP	12	С	+	+	Т вкл. канала 1
ch1TempFinishP	13	D	+	+	Т выкл. канала 1
ch2TempStartP	14	Е	+	+	Т вкл. канала 2
ch2TempFinishP	15	F	+	+	Т выкл. канала 2
ch3TempStartP	16	10	+	+	Т вкл. канала 3
ch3TempFinishP	17	11	+	+	Т выкл. канала 3
ch4TempStartP	18	12	+	+	Т вкл. канала 4
ch4TempFinishP	19	13	+	+	Т выкл. канала 4
ch1TempAirMinP	20	14	+	+	Т возд. Мин. канала 1
ch2TempAirMinP	21	15	+	+	Т возд. Мин. канала 2
ch3TempAirMinP	22	16	+	+	Т возд. Мин. канала 3
ch4TempAirMinP	23	17	+	+	Т возд. Мин. канала 4
relay1CycleP	24	18	+	+	Цикл реле канала 1
relay2CycleP	25	19	+	+	Цикл реле канала 2

relay3CycleP	26	1A	+	+	Цикл реле канала 3
relay4CycleP	27	1B	+	+	Цикл реле канала 4
dtEmerg1Plus	28	1C	+	+	Индикация аварии датчика на канале 1: 1 - Вкл, 0 - Выкл
dtEmerg2Plus	29	1D	+	+	Индикация аварии датчика на канале 2: 1 - Вкл, 0 - Выкл
dtEmerg3Plus	30	1E	+	+	Индикация аварии датчика на канале 3: 1 - Вкл, 0 - Выкл
dtEmerg4Plus	31	1F	+	+	Индикация аварии датчика на канале 4: 1 - Вкл, 0 - Выкл
Данные для реж	(има "	кровј	пя/дор		
do1Sensitivity	32	20	+	+	Чувствительность ДО1: 1-9, 0 - Выкл
do2Sensitivity	33	21	+	+	Чувствительность ДО2: 1-9, 0 - Выкл
dw1Sensitivity	34	22	+	+	Чувствительность ДВ1: 1-9, 0 - Выкл
dw2Sensitivity	35	23	+	+	Чувствительность ДВ2: 1-9, 0 - Выкл
dw3Sensitivity	36	24	+	+	Чувствительность ДВЗ: 1-9, 0 - Выкл
dw4Sensitivity	37	25	+	+	Чувствительность ДВ4: 1-9, 0 - Выкл
airTempMinRoofPath	38	26	+	+	Нижний предел рабочего диапазона t° воздуха
airTempMaxRoofPath	39	27	+	+	Верхний предел рабочего диапазона t° воздуха
surfaceTempCh1RoofPath	40	28	+	+	t° поверхности канала 1
surfaceTempCh2RoofPath	41	29	+	+	t° поверхности канала 2
surfaceTempCh3RoofPath	42	2A	+	+	t° поверхности канала 3
surfaceTempCh4RoofPath	43	2B	+	+	t° поверхности канала 4
delay1RoofPath	44	2C	+	+	Время догрева канала 1
delay2RoofPath	45	2D	+	+	Время догрева канала 2
delay3RoofPath	46	2E	+	+	Время догрева канала 3
delay4RoofPath	47	2F	+	+	Время догрева канала 4
pathHeat1	48	30	+	+	Обогрев на канале 1: 1 - Вкл, 0 - Выкл
pathHeat2	49	31	+	+	Обогрев на канале 2: 1 - Вкл, 0 - Выкл
pathHeat3	50	32	+	+	Обогрев на канале 3: 1 - Вкл, 0 - Выкл
pathHeat4	51	33	+	+	Обогрев на канале 4: 1 - Вкл, 0 - Выкл
pathHeatHours1	52	34	+	+	Время оттайки для канала 1
pathHeatHours2	53	35	+	+	Время оттайки для канала 2
pathHeatHours3	54	36	+	+	Время оттайки для канала 3

pathHeatHours4	55	37	+	+	Время оттайки для канала 4
Данные для режима "ТАЙМЕР"					
timer1Period	56	38	+	+	Период реле на канале 1
timer2Period	57	39	+	+	Период реле на канале 2
timer3Period	58	ЗA	+	+	Период реле на канале 3
timer4Period	59	3B	+	+	Период реле на канале 4
timer1Percent	60	3C	+	+	Коэффициент заполнения на канале 1
timer2Percent	61	3D	+	+	Коэффициент заполнения на канале 2
timer3Percent	62	3E	+	+	Коэффициент заполнения на канале 3
timer4Percent	63	3F	+	+	Коэффициент заполнения на канале 4
Настройки датчико	в темп	ерату	оы 42	0 мА	
t4mA1	64	40	+	+	t° при сигнале 4 мА от НПТ на канале 1
t20mA1	65	41	+	+	t° при сигнале 20 мА от НПТ на канале 1
t4mA2	66	42	ť	+	t° при сигнале 4 мА от НПТ на канале 2
t20mA2	67	43	+	+	t° при сигнале 20 мА от НПТ на канале 2
t4mA3	68	44	+	+	t° при сигнале 4 мА от НПТ на канале 3
t20mA3	69	45	+	+	t° при сигнале 20 мА от НПТ на канале 3
t4mA4	70	46	+	+	t° при сигнале 4 мА от НПТ на канале 4
t20mA4	71	47	+	+	t° при сигнале 20 мА от НПТ на канале 4
Общие	настр				
currentMode	72	48	+	+	Текущий режим работы: 1 - Труба, 2 - Труба+, 3 - Кровля/дор, 4 - Таймер, 5 - Значения датчиков
Служебные переменные	73 -77		-	-	
mbAdres	78	4E	+	-	Адрес устройства в сети MODBUS
password1	90	5A	+	-	1-я цифра пароля
password2	91	5B	+	-	2-я цифра пароля
password3	92	5C	+	-	3-я цифра пароля
password4	93	5D	+	-	4-я цифра пароля
password5	94	5E	+	-	5-я цифра пароля
Служебные переменные	95-99		-	-	
Текущие параметры прибора					
currTempST22ch1	100	64	+	-	Текущая t° на входе Д1 x10, -4040 – ошибка датчика

currTempST22ch2	101	65	+	-	Текущая t° на входе Д2 x10, -4040 – ошибка датчика
currTempST22ch3	102	66	+	-	Текущая t° на входе Д3 x10, -4040 – ошибка датчика
currTempST22ch4	103	67	+	-	Текущая t° на входе Д4 x10, -4040 – ошибка датчика
currTempST22ch5	104	68	+	-	Текущая t° на входе Д5 x10, -4040 – ошибка датчика
currTemp4_20ch1	105	69	+	-	Текущая t° на входе 1 4-20 мА x10, -4040 – ошибка датчика
currTemp4_20ch2	106	6A	+	-	Текущая t° на входе 2 4-20 мА x10, -4040 – ошибка датчика
currTemp4_20ch3	107	6B	+	-	Текущая t° на входе 3 4-20 мА x10, -4040 – ошибка датчика
currTemp4_20ch4	108	6C	+	-	Текущая t° на входе 4 4-20 мА x10, -4040 – ошибка датчика
stateRelay1	109	6D	+	-	Состояние реле 1: 1 - Вкл, 0 - Выкл
stateRelay2	110	6E	+	-	Состояние реле 2: 1 - Вкл, 0 - Выкл
stateRelay3	111	6F	+	-	Состояние реле 3: 1 - Вкл, 0 - Выкл
stateRelay4	112	70	+	-	Состояние реле 4: 1 - Вкл, 0 - Выкл
stateRelayPSHeat	113	71	+	M	Состояние реле 7 (Питание ДО): 1 - Вкл, 0 - Выкл
stateRelayDefrost	114	72	+	-	Состояние реле 6 (Оттайка): 1 - Вкл, 0 - Выкл
stateRelayError	115	73	+	-	Состояние реле 5 (Ошибка): 1 - Вкл, 0 - Выкл
dutyCyclePlus1	116	74	+	-	Текущий коэффициент заполнения (% мощности) в режиме Труба+ на канале 1
dutyCyclePlus2	117	75	+	-	Текущий коэффициент заполнения (% мощности) в режиме Труба+ на канале 2
dutyCyclePlus3	118	76	+	-	Текущий коэффициент заполнения (% мощности) в режиме Труба+ на канале З
dutyCyclePlus4	119	77	+	-	Текущий коэффициент заполнения (% мощности) в режиме Труба+ на канале 4
timeToRelay1_OFF_min	120	78	+	-	Время в минутах до отключения реле в режиме Таймер на канале 1
timeToRelay1_OFF_sec	121	79	+	-	Время в секундах до отключения реле в режиме Таймер на канале 1
timeToRelay2_OFF_min	122	7A	+	-	Время в минутах до отключения реле в режиме Таймер на канале 2
timeToRelay2_OFF_sec	123	7B	+	-	Время в секундах до отключения реле в режиме Таймер на канале 2
timeToRelay3_OFF_min	124	7C	+	-	Время в минутах до отключения реле в режиме Таймер на канале 3
timeToRelay3_OFF_sec	125	7D	+	-	Время в секундах до отключения реле в режиме Таймер на канале 3

timeToRelay4_OFF_min	126	7E	+	-	Время в минутах до отключения реле в режиме Таймер на канале 4
timeToRelay4_OFF_sec	127	7F	+	-	Время в секундах до отключения реле в режиме Таймер на канале 4
stateD01	128	80	+	-	Состояние ДО1: 80 ('Р') - датчик сработал, 78 ('N') - датчик не сработал, 68 ('D') - грязный датчик, 88 ('X') - датчик отключён программно
stateD02	129	81	+	-	Состояние ДО2: 80 ('Р') - датчик сработал, 78 ('N') - датчик не сработал, 68 ('D') - грязный датчик, 88 ('X') - датчик отключён программно
stateDW1	130	82	+	-	Состояние ДВ1: 80 ('Р') - датчик сработал, 78 ('N') - датчик не сработал, 68 ('D') - грязный датчик, 88 ('X') - датчик отключён программно
stateDW2	131	83	+	-	Состояние ДВ2: 80 ('Р') - датчик сработал, 78 ('N') - датчик не сработал, 68 ('D') - грязный датчик, 88 ('X') - датчик отключён программно
stateDW3	132	84	+	Mf	Состояние ДВ3: 80 ('Р') - датчик сработал, 78 ('N') - датчик не сработал, 68 ('D') - грязный датчик, 88 ('X') - датчик отключён программно
stateDW4	133	85	+	-	Состояние ДВ4: 80 ('Р') - датчик сработал, 78 ('N') - датчик не сработал, 68 ('D') - грязный датчик, 88 ('X') - датчик отключён программно
defrost	134	86	+	+	Управление Оттайкой. При записи*: 1 – включение, 0 - выключение При чтении: 1 - оттайка включена, 0 - выключена * При включении или выключении оттайки следует однократно отправить команду 0x10 с нужным значением (1 или 0) этого регистра

10. ЧАСТО ЗАДАВАЕМЫЕ ВОПРОСЫ ПО ТЕРМ-2000

 В режиме «Труба» или «Труба+» на некоторые из каналов 1-4 не подключены датчики температуры, при этом не горит индикатор ошибки на лицевой панели и не срабатывает реле 5 – необходимо проверить, включена ли индикация на соответствующих каналах в меню выбранного режима

- 2.) В режиме «Таймер» на каких-то каналах вместо времени до отключения отображаются символы «---» и не включаются реле на этих каналах необходимо проверить, что для соответствующих каналов в меню установлен период и коэффициент заполнения, не равные 0
- 3.) В режиме «Кровля/дор» к прибору подключены датчики осадков и воды, но на некоторых или на всех каналах не включаются реле – проверить, подключены ли датчики программно в меню этого режима (установлена ли для них чувствительность), а также убедиться в последнем окне индикации режима «Кровля/дор», что датчики не загрязнены (см. пункт 7.3.3)
- 4.) В режиме «Кровля/дор» сработали датчики осадков или воды, но обогрев не включился – убедиться, что температура воздуха (1-е окно «Температура воздуха») находится в установленном диапазоне
- 5.) В режиме «Кровля/дор» при включении оттайки обогрев включился не на всех каналах – убедиться, что к выключенным каналам не подключены датчики t° поверхности, или, если они подключены, то t° воздуха не находится в установленном диапазоне
- 6.) В режиме «Кровля/дор» на некоторых каналах не включается обогрев, но все условия для этого соблюдены – необходимо проверить, что обогрев на этих каналах включён программно в меню прибора (окно «Обогрев на канале» в соответствии с пунктом 7.3.2 и рисунком 16)

11. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Подключение терморегулятора ТЕРМ-2000 должно производиться квалифицированным электриком. Все работы по монтажу и подключению ТЕРМ-2000 следует проводить при отключенном напряжении питания.

Для обеспечения безопасной эксплуатации системы обогрева, необходимо использовать аппараты защиты от сверхтоков (автоматический выключатель), а также АВДТ (УЗО или дифавтомат) с номинальным отключающим дифференциальным током не более 30 мА.

12. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Терморегулятор ТЕРМ-2000 испытан предприятием-изготовителем и признан годным к эксплуатации.

Гарантийный срок - 2 года с даты продажи

В течение гарантийного срока покупатель имеет право на ремонт или замену изделия при обнаружении неисправностей, произошедших по вине изготовителя и при условии выполнения указаний по установке и эксплуатации, изложенных в настоящей инструкции.

При отсутствии в паспорте отметки торгующей организации гарантийный срок исчисляется со дня выпуска терморегулятора предприятием-изготовителем. В течение гарантийного срока в случае обнаружения неисправности по вине изготовителя и при соблюдении правил монтажа, эксплуатации, транспортирования и хранения, покупатель имеет право на его бесплатный ремонт. Гарантийный ремонт осуществляется при предъявлении настоящего паспорта с датой продажи и штампом предприятия-изготовителя.

13. ТРАНСПОРТИРОВКА И ХРАНЕНИЕ

Терморегулятор ТЕРМ-2000 в упаковке изготовителя может транспортироваться всеми видами транспорта при температуре от - 40°С до +60°С, относительной влажности воздуха (при температуре +25°С) не более 80%. Транспортировку следует осуществлять в закрытом транспорте.

Хранение прибора производится в заводской упаковке. Температурный диапазон хранения от -40°С до +60°С. Относительная влажность воздуха (при температуре +25°С) не более 80%. Воздух в помещении не должен содержать пыли, паров кислот и щелочей, а также газов, вызывающих коррозию.

14. СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

При возникновении неисправностей в течение гарантийного срока покупатель должен незамедлительно направить рекламацию изготовителю.

15. СВИДЕТЕЛЬСТВО О ПРИЁМКЕ

Терморегулятор ТЕРМ-2000 прошёл заводские испытания и признан годным к эксплуатации

Штамп ОТК

Дата выпуска _____

Подпись _____

16. СВЕДЕНИЯ О ПРОДАЖЕ

Дата продажи _____

Отметка продавца _____

Изготовитель: ООО «ГК Терм»

г. Екатеринбург, Свердловская обл., ул. Культуры, 23 **Тел./факс:** (343) 33-66-166; **Е-mail:** zakaz@tepm.ru; **Сайт:** www.prom.tepm.ru

Адреса сервисных центров приведены на сайте www.prom.tepm.ru