

www.almaval.kz

Назначение и область применения

Шиберная ножевая задвижка предназначены для перекрытия потока рабочей среды и в некоторых случаях для регулирования потока, с содержанием твердых частиц, либо для перекрытия потока сухих твердых веществ в бункерных системах. В случаях применения задвижки в бункерных системах, рекомендуется устанавливать задвижку так, чтобы стрелка на корпусе задвижки указывала в противоположном направлении, реальному направлению потока.

Основные области применения:

- целлюлозно-бумажная промышленность;
- горнодобывающая промышленность;
- элеваторы;
- химические заводы:
- пищевая промышленность;
- транспортировка сыпучих материалов;
- обработка сточных вод.

Рабочие параметры	
Диаметры:	DN 50-400
Стандартные фланцевые соединения:	DIN PN10/16
Материалы уплотнения:	EPDM/NBR/metal

Примечание: Дефлектор в седловом уплотнении может быть изготовлен из следующих материалов: (CA-15, CF8M)

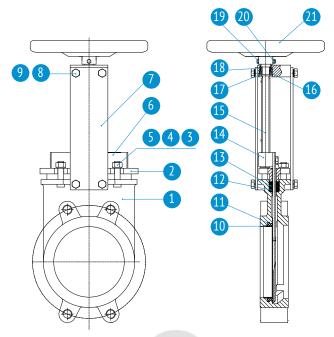
Максимальное рабочее давление, бар						
DN50-250	10					
DN300-400	6					

^{*} По индивидуальному заказу размеры и рабочее давление могут быть увеличены.

Указанные значения максимального рабочего давления применимы к давлению рабочей среды, совпадающей с направлением стрелки на корпусе задвижки. В конструкции задвижки применены направляющие опоры ножа, что позволяет выдерживать до 30% от максимального давления в противоположном направлении без каких-либо повреждений. Однако в этих условиях не обеспечивается 100% герметичность задвижки. Чтобы получить полную герметичность с двух сторон ножа, рекомендуется рассмотреть двухсторонние шиберные ножевые задвижки.

Описание

- Цельный литой корпус из чугуна или стали с опорными направляющими для ножа.
- Высокая пропускная способность при низких перепадах давления.
- Возможно использование различных материалов уплотнений и набивки сальника.
- Расстояние между торцами задвижки (строительная длина) по стандартам компании.
- Стрелка на корпусе задвижки указывает направление потока.


Разрешительная документация

Технический регламент Таможенного союза "О безопасности машин и оборудования" ТР ТС 010/2011

Гарантия качества

Все шиберные ножевые задвижки гильотинного типа проходят испытания гидравлическим методом при помощи воды на заводе-изготовителе. По запросу вы можете получить сертификаты используемых материалов и сертификатов проведенных испытаций

тест на прочность корпуса = $PN \times 1.5$ тест на герметичность = $PN \times 1.1$

6		
Спец	цификация материало	В
Nº	Наименование	Материал
1	Корпус	Чугун GJS-400-15(GGG40)
2	Крышка сальника	Чугун GJS-400-15(GGG40)
3	Гайка	Оцинк. углеродистая сталь
4	Шайба	Оцинк. углеродистая сталь
5	Шпилька	Оцинк. углеродистая сталь
6	Нож	Нерж. сталь AISI304
7	Опорная пластина	Угл.сталь S275JR
8	Болт	Оцинк. углеродистая сталь
9	Пружинная шайба	Оцинк. углеродистая сталь
10	Уплотнение	NBR
11	Прижимное кольцо	Нерж. Сталь AISI304
12	Набивка сальника	PTFE
13	Кольцевое уплотнение	NBR
14	Гайка штока	Бронза
15	Шток	Нерж. Сталь AISI304
16	Подшипниковый узел	Углеродистая сталь
17	Упорная шайба	Углеродистая сталь
18	Подшипник	Углеродистая сталь
19	Болт	Оцинк. углеродистая сталь
20	Гайка	Оцинк. углеродистая сталь
21	Штурвал	Углеродистая сталь

Преимущества

Шиберная ножевая задвижка применяется для перекрытия потока рабочей среды в одном направлении, для таких задвижек, существует риск деформации ножа по причине возникшего обратного давления. Шиберная ножевая задвижка имеет направляющие и уплотняющие клинья для ножа внутри корпуса, которые помогают удерживать обратное давление до 30% от указанного рабочего давления, не деформируя нож.

Защитный колпак штока устанавливается не зависимо от маховика, и его замена может производится без его демонтажа, это позволяет легко проводить техническое обслуживание штока.

Шток шиберной ножевой задвижки изготовлен из нержавеющей стали AISI 304, которая имеет преимущества по отношению к другим сплавам. Шток из AISI420 - применяется по индивидуальному заказу. Многие производители применяют сталь с содержанием хрома до 13% - это может привести к ускоренной коррозии и выхода из строя оборудования.

Маховик шиберной ножевой задвижки изготовлен из углеродистой стали. Бронзовая гайка штока защищена от прямого воздействия внешней среды, так как она находится в заполненном смазкой, закрытом корпусе траверсы ручного управления. Бронзовая гайка дает возможность открытия/закрытия задвижки при помощи гаечного ключа без использования маховика (другие производители такой возможности в своей конструкции не предоставляют).

КОРПУС

Односторонняя шиберная ножевая задвижка гильотинного типа имеет цельный литой корпус с опорными направляющими ножа и уплотняющими клиньями.

- Для больших диаметров, снаружи корпуса привариваются дополнительные ребра жесткости для распределения рабочего давления.
- Стандартные материалы, используемые при изготовлении: GJS-400-15 (GGG40).
- Задвижки из чугуна имеют эпоксидное антикоррозийное покрытие толщиной не менее 250 мкм (цвет RAL 5015). Нанесение других защитных покрытий по запросу.

НОЖ

Для изготовления ножа шиберной ножевой задвижки используются стандартные материалы: нержавеющая сталь AISI304 - применяется для задвижки с корпусом из литого чугуна.

Нож полируется с двух сторон для обеспечения беспрепятственного скольжения в местах контакта с уплотнительным материалом седла, предотвращая защемление или повреждение уплотнения. Кромка ножа обработана под закругленную форму, которая помогает исключить повреждения материала набивки сальника.

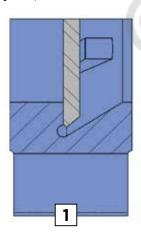
По индивидуальному заказу могут поставляться:

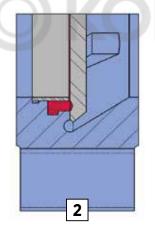
- иные сочетания корпуса и ножа;
- ножи с разной степенью полировки и антиабразивной обработки.

СЕДЛОВЫЕ УПЛОТНЕНИЯ

EPDM

ЕРDМ является стандартным седловым уплотнением, которое устанавливают на задвижках, обеспечивает 100% герметичность. Его можно использовать во многих областях применения, но, как правило, он используется для воды и нейтральных к материалу седлового уплотнения продуктов, разведенных в воде при температурах не выше +110°C. Его также можно использовать с абразивными рабочими средами.


NBR


Бензо-маслостойкий материал применяется для светлых нефтепродуктов и жидкостей, содержащих жиры и масла, при температурах не выше $+80\ ^{\circ}$ С. Обеспечивает 100% герметичность.

Примечание: по запросу могут использоваться др. типы эластомеров, уточняйте в техническом отделе поставщика.

СЕДЛОВОЕ УПЛОТНЕНИЕ (ГЕРМЕТИЧНОСТЬ)

Амавал предлагает два типа седловых уплотнений, предназначенных для различных условий эксплуатации.

УПЛОТНЕНИЕ 1. Уплотнение Металл/ Металл

Уплотнение является негерметичным, расчетная утечка составляет 1,5% от расхода в перекрываемом трубопроводе (для воды в качестве рабочей среды).

УПЛОТНЕНИЕ 2. Стандартное эластичное седловое уплотнение

Этот тип включает в себя эластичное седловое уплотнение, которое удерживается во внутренней части корпуса с помощью фиксирующего кольца из нерж. стали AISI304.

Характеристики уплотнений								
МАТЕРИАЛ	T MAX	ПРИМЕНЕНИЕ						
Металл/металл	>250Cº	Высокая температура/ Низкий уровень водонепроницаемости						
EPDM (E)	-20+110Cº	Канализационные стоки, вода, нейтральные среды						
NBR (N)	-10+80Cº	Углеводороды, масла и смазки						

Типы набивок

Стандартная набивка сальника шиберных ножевых задвижек состоит из трех слоев с уплотнительным кольцом из ЕРDМ в середине. Набивка обеспечивает герметичность уплотнения между корпусом и ножом, препятствуя любым утечкам в атмосферу. Набивка размещается в легкодоступном месте и может заменяться без снятия задвижки с трубопровода. Имеются различные типы набивок, поставляемые в зависимости от конкретной области применения задвижки:

ПРОМАСЛЕННОЕ Х/Б ВОЛОКНО

(рекомендуется для гидравлических установок) Данная набивка состоит из х/б волокон, промасленных изнутри и снаружи. Это набивка общего назначения для различных гидравлических установок, таких как насосы или задвижки.

СУХОЕ Х/Б ВОЛОКНО (состоит из х/б волокон)

Это набивка общего назначения для установок, работающих с твердыми веществами.

X/Б ВОЛОКНО + PTFE

Набивка состоит из плетеных x/б волокон, пропитанных изнутри и снаружи PTFE. Это набивка общего назначения для различных гидравлических установок, таких как насосы или задвижки.

СИНТЕТИЧЕСКОЕ ВОЛОКНО + РТГЕ

Набивка состоит из плетеных синтетических волокон, пропитанных изнутри и снаружи тефлоном методом вакуумной дисперсии. Набивка общего назначения для различных гидравлических установок, таких как насосы или задвижки. Подходит для различных агрессивных и маслосодержащих жидкостей, в том числе, с содержанием твердых частиц во взвешенном состоянии.

ГРАФИТ

Набивка состоит из графитовых волокон высокой частоты. Имеет диагональную систему переплетения и пропитку графитовой смазкой, что снижает ее пористость и повышает эффективность. Имеет широкий спектр применения, т. к. графит устойчив к воздействию пара, воды, масел, растворителей, щелочей и большинства кислот.

КЕРАМИЧЕСКОЕ ВОЛОКНО

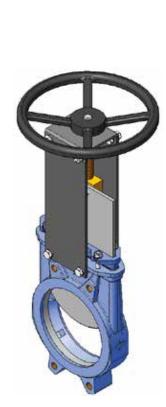
Набивка состоит из керамических волокон. Применятся в основном для воздуха или газов при высоких температурах и низких давлениях.

Характеристики набивок								
МАТЕРИАЛ	PN	T MAX	рН					
Промасленное х/б волокно	10 бар	+100Cº	6-8					
Сухое х/б волокно	0.5 бар	+100Cº	6-8					
X/б волокно + PTFE	30 бар	+120Cº	6-8					
Синтетическое волокно + PTFE	100 бар	+270Cº	0-14					
Графит	40 бар	+650Cº	0-14					
Керамическое волокно	0.3 бар	+1400Cº	0-14					

Шток

Компания предлагает шиберные ножевые задвижки с выдвижным и с невыдвижным штоком. Конструкция с выдвижным штоком комплектуется колпаком,

КРЫШКА САЛЬНИКА

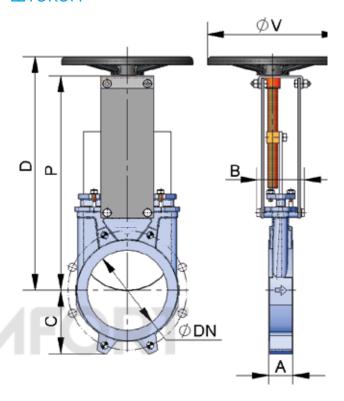

Крышка сальника обеспечивает равномерное прижатие уплотнения набивки, что создает герметичность сальника.

В стандартной комплектации задвижки с чугунным корпусом комплектуются крышкой сальника из чугуна с шаровидным графитом GJS-400-15 (GGG40).

ПРИВОДЫ

Компания предлагает различные системы управления к шиберным ножевым задвижкам. Шиберные ножевые задвижки отличаются качественно проработанной конструкцией, точно расчитанными местами крепления монтажных фланцев, скоб и иных приспособлений с возможностью монтажа любого типа управления. Шиберные ножевые задвижки отличаются от аналогов простотой в эксплуатации и надежностью в работе, а так же взаимозаменяемостью управления.

Типы управления	
Ручной	Маховик с невыдвижным штоком
Автоматический	Пневматический привод

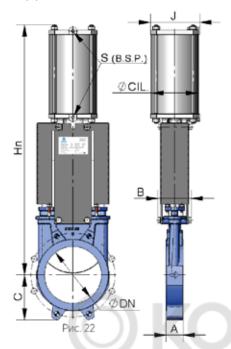


маховик с невыдвижным штоком

с пневматическим приводом

Маховик с невыдвижным штоком

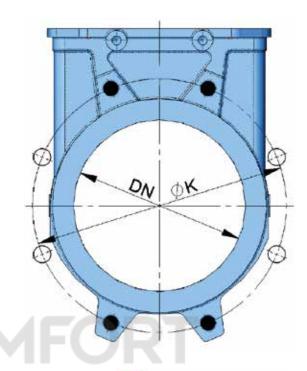
Применяется в местах, где требуются оптимальные габариты задвижек, для удобства монтажа и эксплуатации.

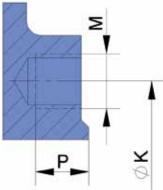

КОМПОНЕНТЫ ПРИВОДА

- маховик
- шток
- направляющие втулки для траверсы
- гайка

Осно	Основные параметры										
DN, MM	PN, бар	А	В	С	Р	D	øV	Bec, кг			
50	10	40	101	63	241	280	225	7			
65	10	40	101	70	268	308	225	8			
80	10	50	101	92	294	333	225	9			
100	10	50	101	105	334	373	225	11			
125	10	50	111	120	367	407	225	13			
150	10	60	111	130	419	458	225	17			
200	10	60	128	160	525	578	325	29			
250	10	70	128	198	626	679	325	40			
300	6	80	128	234	726	779	380	53			
350	6	96	305	256	797	906	450	93			
400	6	100	305	292	903	1012	450	126			

Пневматический привод двойного действия




Давление подачи воздуха в пневмоцилиндр составляет не менее 6 бар и не более 10 бар, воздух должен быть сухим и смазанным.

- 10 бар это максимально допустимое давление воздуха. Если давление воздуха меньше 6 бар, необходимо обратиться за консультацией.
- Для шиберных ножевых задвижек диаметром от DN50 до DN200 корпус и крышки цилиндра изготавливаются из алюминия, шток цилиндра из нержавеющей стали AISI304, поршень из стали с эластомерным покрытием, а тороидальные уплотнения из нитрила.
- Для шиберных ножевых задвижек диаметром свыше DN200 крышки цилиндра изготавливаются из чугуна с шаровидным графитом или из углеродистой стали.
- По заказу привод может быть изготовлен полностью из нержавеющей стали.

Осн	Основные параметры											
DN, mm	PN, бар	Α	В	С	Ø CIL.	Ø VAST	J	S (B.S.P.)	Hn	Bec, кг		
50	10	40	92	63	80	20	96	1/4"	415	7		
65	10	40	92	70	80	20	96	1/4"	455	8		
80	10	50	92	92	80	20	96	1/4"	498	9		
100	10	50	92	105	100	20	115	1/4"	565	12		
125	10	50	102	120	125	25	138	1/4"	636	18		
150	10	60	102	130	125	25	138	1/4"	717	22		
200	10	60	119	160	160	30	175	1/4"	874	37		
250	10	70	119	198	200	30	218	3/8"	1036	58		
300	6	70	119	234	200	30	218	3/8"	1182	72		
350	6	96	290	256	250	40	270	3/8"	1380	130		
400	6	100	290	292	250	40	270	3/8"	1530	155		

Размеры фланцевых соединений

Резьбовые отверстия

О Сквозные отверстия

EN 109	2-2 PN1	.0				
DN, mm	PN, бар	•	0	Метри- ческая	Р, глубина	ØK
50	10	4	-	M 16	8	125
65	10	4	-	M 16	8	145
80	10	4	4	M 16	9	160
100	10	4	4	M 16	9	180
125	10	4	4	M 16	9	210
150	10	4	4	M 20	10	240
200	10	4	4	M 20	10	295
250	10	8	4	M 20	12	350
300	6	8	4	M 20	12	400
350	6	10	6	M 20	19	460
400	6	10	6	M 24	20	515